
LA-UR-17-29083
Approved for public release; distribution is unlimited.

Title: User Guidelines and Best Practices for CASL VUQ Analysis Using Dakota

Author(s): Williams, Brian J.; Adams, Brian M.; Coleman, Kayla; Gilkey, Lindsay
N.; Gordon, Natalie; Hooper, Russell; Khuwaileh, Bassam A.; Lewis,
Allison; Maupin, Kathryn; Smith, Ralph C.; Swiler, Laura P.; Turinsky,
Paul J.

Intended for: Report

Issued: 2017-10-04

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

	

User	Guidelines	and	Best	
Practices	for	CASL	VUQ	
Analysis	Using	Dakota	

	
CASL-U-2017-1445-000	

	
Brian	M.	Adams1	
Kayla	Coleman2	

Lindsay	N.	Gilkey1	
Natalie	Gordon1	

Russell	W.	Hooper1	
Bassam	A.	Khuwaileh3	

Allison	Lewis2	
Kathryn	Maupin1	
Ralph	C.	Smith2	
Laura	P.	Swiler1	
Paul	J.	Turinsky2	
Brian	J.	Williams3	

	
1Sandia	National	Laboratories	

2North	Carolina	State	University	
3Los	Alamos	National	Laboratory	

	
September	29,	2017	

L2:VVI.P15.03	
	

User Guidelines and Best Practices for
CASL VUQ Analysis Using Dakota

Brian M. Adams 1

Kayla Coleman 2

Lindsay N. Gilkey 3

Natalie Gordon 4

Russell W. Hooper 5

Bassam A. Khuwaileh 6

Allison Lewis 7

Kathryn Maupin 8

Ralph C. Smith 9

Laura P. Swiler 10

Paul J. Turinsky 11

Brian J. Williams 12

September 29, 2017

1briadam@sandia.gov
2kdcolem2@ncsu.edu
3lngilke@sandia.gov
4ngordon@sandia.gov
5rhoope@sandia.gov
6bkhuwaileh@sharjah.ac.ae
7allewis2@ncsu.edu
8kmaupin@sandia.gov
9rsmith@ncsu.edu

10lpswile@sandia.gov
11turinsky@ncsu.edu
12brianw@lanl.gov

Contents

1 Overview 1
1.1 Manual Contents . 2
1.2 Getting Started with Dakota . 4
1.3 Acknowledgments . 7

2 Application Example Problems 8
2.1 Cantilever beam . 9
2.2 General Linear Model Verification Test Suite . 10
2.3 COBRA-TF Thermal-Hydraulics Simulation Problem 13

2.3.1 COBRA-TF Simulator Overview . 13
2.3.2 COBRA-TF test problem description . 13
2.3.3 VUQ Parameters in COBRA-TF Problem 6 14

2.4 CIPS — Crud Induced Power Shift . 16
2.5 Non-mixing vane single bundle experiments . 19

3 Sensitivity Analysis 22
3.1 Terminology . 22

3.1.1 Local Versus Global Sensitivity . 22
3.1.2 Sensitivity Metrics . 23

3.2 Recommended Methods . 25
3.2.1 Centered Parameter Study . 27
3.2.2 Multidimensional Parameter Study . 27
3.2.3 Global LHS Sampling . 31
3.2.4 PSUADE/Morris Method . 38

3.3 Summary and Additional Approaches . 38

4 Surrogate Models 40
4.1 Polynomial Regression Models . 42

4.1.1 Fitting Polynomial Surrogates in Dakota . 43
4.2 Kriging and Gaussian Process Models . 46

4.2.1 Fitting Kriging Surrogates in Dakota . 49
4.3 Summary . 52

5 Optimization and Deterministic Calibration 54
5.1 Terminology and Problem Formulations . 55

5.1.1 Special Considerations for Calibration . 56
5.2 Recommended Methods . 58

5.2.1 Gradient-Based Local Methods . 58

CASL-U-2017-1445-000 i

5.2.2 Derivative-Free Local Methods . 62
5.2.3 Derivative-Free Global Methods . 65

5.3 Summary and Additional Approaches . 70

6 Uncertainty Quantification 72
6.1 Uncertainty Propagation . 73

6.1.1 Sampling Methods . 73
6.1.2 Stochastic Polynomial Methods . 74
6.1.3 Verification . 76
6.1.4 Prediction Intervals . 77
6.1.5 Uncertainty Propagation: Cantilever Beam Example 77

6.2 Bayesian Model Calibration . 85
6.2.1 Direct Implementation of Bayes’ Relation . 86
6.2.2 Sampling Based Metropolis Algorithms . 87
6.2.3 Model Calibration and Surrogate Models . 88
6.2.4 Verification . 89
6.2.5 Synthetic Data . 90
6.2.6 Bayesian Calibration Examples . 90

7 COBRA-TF VUQ Studies 105
7.1 Initial Parameter Studies with Two Power Distributions 105
7.2 COBRA-TF Sensitivity Studies . 106

7.2.1 Centered Parameter Study . 106
7.2.2 Latin hypercube sampling studies . 111
7.2.3 Morris Screening . 116
7.2.4 Screening to Reduce Parameters . 116

7.3 Calibration Studies . 118
7.3.1 Deterministic Calibration . 119
7.3.2 Surrogate Construction . 119
7.3.3 Bayesian Calibration . 123

8 CIPS — Crud Induced Power Shift 131
8.1 The CIPS Phenomenon . 131
8.2 Parameter Ranking and Downselection . 131

8.2.1 VERA Common Input Parameters . 132
8.2.2 COBRA-TF Parameters . 132
8.2.3 MAMBA1D Parameters . 134
8.2.4 Neutronics Cross Section Sensitivity . 134
8.2.5 Parameter Downselect . 134

8.3 CIPS UQ Simulations . 134
8.4 Wilks Uncertainty Quantification . 138

9 Design With Hi2Lo Framework 142
9.1 Mutual Information-Based Design . 143
9.2 Dakota Implementation . 144

CASL-U-2017-1445-000 ii

A General Linear Model Verification Test Suite 151
A.1 Verification Scenarios . 151
A.2 Correlation Functions . 154
A.3 Energy Test of Equal Distributions . 155

B Procedure for Running COBRA-TF Studies 156

C ROMUSE2.0 User Manual 158
C.1 Introduction . 158
C.2 System Requirements and Specifications . 160
C.3 Perturbing Input Parameters . 161

C.3.1 Introduction . 161
C.3.2 SCALE Cross-Section Library Perturbation 162
C.3.3 VERA Cross-Section Library Perturbation . 164
C.3.4 General Parameter Perturbation . 167

C.4 Complex Sequences . 168
C.4.1 Execution and Response: ROMUSE-EXE and ROMUSE-RESPONSES 168
C.4.2 ROMUSE-DAKOTA . 172

CASL-U-2017-1445-000 iii

Chapter 1

Overview

Sandia’s Dakota software (available at http://dakota.sandia.gov) supports science and engi-
neering transformation through advanced exploration of simulations. Specifically it manages and
analyzes ensembles of simulations to provide broader and deeper perspective for analysts and de-
cision makers. This enables them to enhance understanding of risk, improve products, and assess
simulation credibility.

In its simplest mode, Dakota can automate typical parameter variation studies through a generic
interface to a physics-based computational model. This can lend efficiency and rigor to manual pa-
rameter perturbation studies already being conducted by analysts. However, Dakota also delivers
advanced parametric analysis techniques enabling design exploration, optimization, model calibra-
tion, risk analysis, and quantification of margins and uncertainty with such models. It directly
supports verification and validation activities. Dakota algorithms enrich complex science and engi-
neering models, enabling an analyst to answer crucial questions of

• Sensitivity: Which are the most important input factors or parameters entering the simula-
tion, and how do they influence key outputs?

• Uncertainty: What is the uncertainty or variability in simulation output, given uncertainties
in input parameters? How safe, reliable, robust, or variable is my system? (Quantification of
margins and uncertainty, QMU)

• Optimization: What parameter values yield the best performing design or operating condi-
tion, given constraints?

• Calibration: What models and/or parameters best match experimental data?

In general, Dakota is the Consortium for Advanced Simulation of Light Water Reactors (CASL)
delivery vehicle for verification, validation, and uncertainty quantification (VUQ) algorithms. It
permits ready application of the VUQ methods described above to simulation codes by CASL
researchers, code developers, and application engineers.

More specifically, the CASL VUQ Strategy [37] prescribes the use of Predictive Capability Matu-
rity Model (PCMM) assessments [41]. PCMM is an expert elicitation tool designed to characterize
and communicate completeness of the approaches used for computational model definition, verifica-
tion, validation, and uncertainty quantification associated with an intended application. Exercising
a computational model with the methods in Dakota will yield, in part, evidence for a predictive ca-
pability maturity model (PCMM) assessment. Table 1.1 summarizes some key predictive maturity
related activities (see details in [37]), with examples of how Dakota fits in.

CASL-U-2017-1445-000 1

http://dakota.sandia.gov

Table 1.1: Summary of Dakota relevance for PCMM-related activities.
VUQ/PCMM Activity Dakota relevance

select quantities of interest (QOIs) (limited)
software quality assurance (SQA) (limited)
code verification conduct parameter studies as a function of

mesh quality; calculate convergence rate
solution verification conduct parameter studies over solver param-

eters or mesh quality; calculate convergence
rate

validation run ensemble of simulations and make (po-
tentially uncertainty-aware) comparisons with
experimental data, assess model form uncer-
tainty

sensitivity conduct global sensitivity analysis to rank or
screen parameters; supports quantified pa-
rameter ranking table (QPRT)

uncertainty quantification compute uncertainty in QOIs for risk-
informed decision making

calibration tune or refine models for use in particular sce-
narios

This manual offers CASL partners a guide to conducting Dakota-based VUQ studies for CASL
problems. It motivates various classes of Dakota methods and includes examples of their use on
representative application problems. On reading, a CASL analyst should understand why and how
to apply Dakota to a simulation problem.

1.1 Manual Contents

This user’s guide emphasizes best practice and highlights a few key approaches to solving the VUQ
analysis problems of greatest interest to CASL today. The remainder of this chapter summarizes
high level steps to getting started using Dakota. Chapter 2, Application Example Problems describes
simple, but physically meaningful, application problems that will be used to demonstrate each of
the Dakota algorithmic approaches described in subsequent chapters. Among the examples are
CASL-relevant COBRA-TF thermal-hydraulic simulator, coupled COBRA-MPACT-MAMBA1D
Crud Induced Power Shift (CIPS) phenomenon, and STAR-COBRA single bundle problems.

Chapters 3 through 6 tour four of Dakota’s major algorithmic capabilities. In each chapter you
will find high-level analysis goals and terminology, with references to more detailed descriptions
and theory; guidance on how to choose from the available Dakota approaches and assess whether
they are working; and application examples, including Dakota input, Dakota output, and post-
processing/interpretation. The major VUQ activities addressed by this manual are:

• Parameter Studies and Sensitivity Analysis: Dakota parameter studies automate typi-
cal parameter variation studies such as running the model at a tensor grid of parameter values
or varying them 1%, 5%, 10% from a nominal value. Sensitivity analysis determines model
parameters most influential on quantities of interest (responses). This can be used to rank
the influence of parameters, as in a Quantified Parameter Ranking Table (QPRT) [37], or

CASL-U-2017-1445-000 2

screen/down-select to a tractable number of free parameters for follow-on analyses. See Chap-
ter 3, Sensitivity Analysis for an overview of parameter studies, global sensitivity analysis
methods and metrics, and a demonstration of using Dakota to perform parameter ranking.

• Surrogate Models: Any of the Dakota studies described can be conducted directly on a
computational model or with surrogate model indirection. Surrogate models are inexpen-
sive approximate models that are intended to capture the salient features of an expensive
high-fidelity model. In this manual and the Dakota context, surrogate models are not based
on simplifying physical assumptions. Rather they are response surface models constructed
automatically by Dakota based on empirical samples of the true simulation’s input/output
behavior. For example, in CASL one might run costly computational fluid dynamics (CFD)
simulations at a set of design points in a parameter space and then have Dakota build an al-
gebraic Kriging model on the QOI data for use in optimization. Chapter 4, Surrogate Models
has an overview of the most commonly used surrogate models, which can smooth noisy model
responses, or reduce computational cost. On reading it, you will be able to create Dakota
studies that automatically run a computational model, generate a response surface model,
and evaluate it in the context of another Dakota study.

• Calibration: Dakota provides capabilities for automatically tuning model parameters to best
match experimental (or high-fidelity model) data. This process is also known as parameter es-
timation, calibration, data assimilation, or model inversion to update knowledge of parameter
values based on additional data. A CASL example would be tuning crud chemistry reaction
rates to match experimental data. Approaches yielding single point estimates of parame-
ters are described in Chapter 5, Optimization and Deterministic Calibration, while Bayesian
methods resulting in a probability distribution for the unknown parameters are covered in
Section 6.2, Bayesian Model Calibration.

• Design Optimization: Adjusting model parameters to meet desired performance criteria
while satisfying other constraints. For example, determine optimal shape to minimize vi-
bration, or design mixing vanes to minimize crud formation. Chapter 5, Optimization and
Deterministic Calibration will help you choose from among Dakota optimization methods
based on problem characteristics and your specific optimization goals.

• Uncertainty Quantification (UQ): Model predictions with quantified uncertainty support
validation and follow-on decision making. UQ methods accept characterizations of input pa-
rameter uncertainty and run the computational model to compute the resulting uncertainties
on response quantities of interest. UQ methods, which yield statistics on QOIs (mean, stan-
dard deviation, distribution, range), are described in Chapter 6, Uncertainty Quantification.

This guide selectively focuses on two to three ways to execute each type of VUQ analysis depend-
ing on goals and problem characteristics. The approaches included have worked well in practice on
a broad range of problems in computational science and engineering. When challenges are encoun-
tered, many alternative and advanced methods that may perform better are available in Dakota.

The manual concludes with three CASL-relevant examples. The first is a realistic thermal-
hydraulics example from a CASL “Progression Problem” in Chapter 7, COBRA-TF VUQ Studies.
The example demonstrates a VUQ activity flow from initial parameter studies, through sensitivity
analysis for parameter screening, to deterministic and Bayesian calibration on a reduced parameter
set. Construction of the surrogate utilized in model calibration as a substitute for more costly direct
COBRA-TF calculations is also illustrated. The second is a coupled thermal-hydraulics, neutronics,
and crud chemistry example developed to model the CIPS phenomenon at the single assembly level

CASL-U-2017-1445-000 3

in Chapter 8, CIPS — Crud Induced Power Shift. Sensitivity analysis is conducted to identify
important parameters, succeeded by uncertainty quantification to establish Wilks upper bounds
on maximum assembly crud thickness and total boron. The third is a thermal-hydraulics example
developed to model Westinghouse non-mixing vane grid, single bundle experiments in Chapter 9,
Design With Hi2Lo Framework. An experimental design algorithm is run to select high-fidelity
STAR-CCM+ runs that efficiently calibrate an uncertain parameter in the low-fidelity COBRA-
TF.

Additional Resources

This user’s guide is not an exhaustive guide to Dakota’s capabilities. It is a high-level supplement
to other Dakota and VUQ resources. Users reaching its extent should consult:

• The Dakota User’s Manual [1]: a more complete summary of Dakota capabilities from getting
started through advanced methods (https://dakota.sandia.gov/sites/default/files/
docs/6.6/Users-6.6.0.pdf);

• The Dakota Reference Manual [2]: extensive guidance on valid keywords to use in a Dakota
input file to specify a Dakota study (https://dakota.sandia.gov//sites/default/files/
docs/6.6/html-ref/index.html);

• The directories dakota/examples and dakota/test included with Dakota distributions which
contain examples of input files referenced in the documentation and many more (also available
at https://software.sandia.gov/trac/dakota/browser/branches/6.4/examples and https:
//software.sandia.gov/trac/dakota/browser/branches/6.4/test);

• The Dakota Theory Manual [3] (https://dakota.sandia.gov/sites/default/files/docs/
6.6/Theory-6.6.0.pdf) and research publications available at http://dakota.sandia.gov/
publications.html: detailed background on algorithmic approaches developed directly in
Dakota to tackle challenging science and engineering analyses; and

• Publications referenced throughout all the above.

This document refers to Dakota 6.6 and its documentation; newer versions may be available on
the Dakota website. This guide for Dakota usage in CASL aims to be generic and thus does not
supplant any domain-specific best practices or guidance for performing VUQ-related studies.

1.2 Getting Started with Dakota

The remainder of this manual largely focuses on selecting and applying Dakota methods and un-
derstanding the results. This section surveys at a higher level some prerequisites for using Dakota,
with references to additional resources for help.

Know Why to Use Dakota

Understanding your simulation’s characteristics, your VUQ analysis goals, and Dakota’s relevance
in achieving them are critical first steps. These likely seem obvious, but are crucial in order to select
from the many available methods in Dakota. This guide aims to address this background by offering
a high-level introduction to some key analysis methods, their application, and benefits. Other
resources to understanding Dakota’s applicability include training materials, publicity materials,

CASL-U-2017-1445-000 4

https://dakota.sandia.gov/sites/default/files/docs/6.6/Users-6.6.0.pdf
https://dakota.sandia.gov/sites/default/files/docs/6.6/Users-6.6.0.pdf
https://dakota.sandia.gov//sites/default/files/docs/6.6/html-ref/index.html
https://dakota.sandia.gov//sites/default/files/docs/6.6/html-ref/index.html
https://software.sandia.gov/trac/dakota/browser/branches/6.4/examples
https://software.sandia.gov/trac/dakota/browser/branches/6.4/test
https://software.sandia.gov/trac/dakota/browser/branches/6.4/test
https://dakota.sandia.gov/sites/default/files/docs/6.6/Theory-6.6.0.pdf
https://dakota.sandia.gov/sites/default/files/docs/6.6/Theory-6.6.0.pdf
 http://dakota.sandia.gov/publications.html
 http://dakota.sandia.gov/publications.html

and publications on the Dakota website http://dakota.sandia.gov, as well as the Dakota User’s
Manual [1].

Access the Software and Other Resources

Dakota: Dakota is available to CASL partners through the Virtual Environment for Reactor
Applications (VERA). Binary distributions include the dakota executable and related utilities. In
source distributions, Dakota appears under DakotaExt/Dakota. Examples of Dakota applied to
CASL problems are evolving. These are archived in milestone reports and protected in the VERA
software in the VUQDemos suite, available from the CASL Git repository. Dakota also has a public
download site http://dakota.sandia.gov/download.html, which may be useful for CASL partners
without ready access to the VERA development environment at Oak Ridge National Laboratory
(ORNL).

This Manual and Examples: Examples from this manual, including input, output, auxiliary
data files, and scripts are available from the VUQDemos section of the CASL Git repository. The
LATEXsource and images are also included.

Help Resources: For help beyond this manual and the documents referenced herein, see
the Dakota website: http://dakota.sandia.gov. It includes software downloads, documentation,
publications, and training materials. It also has guidance on seeking general help with Dakota
via the dakota-users mailing list (dakota-users@software.sandia.gov). CASL-specific issues
should be directed to casl-vvi@casl.gov.

Dakota Analysis Workflow

An overall Dakota analysis process is depicted in Figure 1.1. The specification of the VUQ analysis
problem to Dakota is given in the text-based Dakota input file, including the method (algorithm)
which dictates how Dakota generates parameter sets at which to run the user’s simulation. As
Dakota runs, it will iteratively evaluate the simulation at these parameter sets by running a user-
provided analysis driver and collecting corresponding quantities of interest output by the simulation
workflow. When complete, the Dakota executable will produce console text output and tabular data
with VUQ results for subsequent analysis.

Interface Dakota to the Simulation

Dakota requires an analysis driver to communicate with the computational model. The contract
for this Dakota/simulation interface is straightforward: it must be an automated workflow that
accepts Dakota parameters as input from a text file, runs the simulation in a batch/non-interactive
mode, and produces responses (quantities of interest derived from simulation output) in a text file
for consumption by Dakota.

As Dakota runs, it will determine values of parameters for which response data is needed. When
ready to evaluate the simulation at such a parameter set, Dakota will write a “parameters file” with
the values of the variables. Dakota will then invoke the specified analysis driver, represented by the
dashed blue box in Figure 1.1. This analysis driver must implement the automated process that
takes a Dakota parameters file as input and produces a Dakota results file as output. Typically
this driver is a script which includes preprocessing, running the code, and postprocessing to extract
QOIs from simulation output. When the driver completes, Dakota requires the “results file” to
contain the quantities of interest resulting from running the simulation at the specified parameter
values.

Additional resources for creating and running a Dakota/simulation workflow include:

CASL-U-2017-1445-000 5

http://dakota.sandia.gov
http://dakota.sandia.gov/download.html
http://dakota.sandia.gov
mailto:dakota-users@software.sandia.gov
mailto:casl-vvi@casl.gov

Dakota Text Input

File

Dakota Output:

Text and Tabular Data

Simulation

(physics model)
Code

Input

Code

Output

Dakota Parameters

File
variables

Preprocessing
User-supplied

automatic post-

processing

Analysis Driver
interface

QOIs in Dakota

Results File
responses

Dakota Executable
method

Figure 1.1: Components of a Dakota study, including Dakota input and output, and interface to a
computational model (simulation).

• High level guidance in “User Supplied Simulation Code Examples” in the Dakota Tutorial in
the Dakota User’s Manual [1], with more details in the “Advanced Simulation Code Interfaces”
chapter, together with example code in dakota/examples/script_interfaces.

• Considerations for having Dakota manage concurrent simulation runs in parallel, as this is a
common need. Managing parallel concurrency locally, within queue, and out of queue, includ-
ing batch submission and later retrieval are addressed by the Dakota User’s Manual, “Appli-
cation Parallelism Use Cases”, together with examples in dakota/examples/parallelism.

• CASL-specific Dakota workflows with COBRA-TF and Insilico, demonstrated in the above
referenced VUQDemos.

Understand Dakota Input Files

Once an interface is constructed between Dakota and the simulation, one may readily apply any
Dakota method by simply changing the input file. Dakota input files are simple plain text files with
six categories of information that can appear (some are optional and some may appear multiple
times in advanced studies). Four of these are indicated notionally in Figure 1.1:

• environment (not depicted): overall control of Dakota methods and tabular output data.

• method: specifies the iterative analysis method being run on the model, for example Latin
hypercube sampling or gradient-based parameter estimation.

• variables: characterization of the model parameters Dakota is varying in the study, such as
lognormal uncertain or continuous design, together with supplementary fixed (state) param-
eters.

• responses: quantities of interest returned to Dakota for analysis.

CASL-U-2017-1445-000 6

• interface: the simulation workflow mapping variables to responses in an automated way;
typically a script that orchestrates this workflow.

• model (not depicted): a container encapsulating a set of variables, interface, and responses for
presentation to a method; useful for specifying that a surrogate model should be automatically
constructed to serve as a proxy for an expensive computational model.

This guide shows and explains a number of examples of input files which configure Dakota to
conduct various kinds of iterative analyses. They can be taken verbatim from the text to conduct
Dakota studies and will also be available from CASL records systems when this manual is published.
Additional examples are available in the various Dakota manuals and with the Dakota software itself.
Specific guidance on individual Dakota keywords is available in the Dakota Reference Manual [2],
which can help when trying to determine how to configure Dakota for a new kind of study.

Understand Dakota Results

This document offers an introduction to Dakota output, including log file output and tabular data
to understand the results of studies. Often this data must be interpreted or post-processed with
external tools to be useful in a decision making context. Examples are included in this manual to
demonstrate this.

1.3 Acknowledgments

This CASL/Dakota manual borrows heavily from the Dakota User’s Manual [1]. We heartily thank
the authors of the most recent version of that document: Brian M. Adams, William J. Bohn-
hoff, Keith R. Dalbey, John P. Eddy, Mohamed S. Ebeida, Michael S. Eldred, Joseph R. Frye,
Gianluca Geraci, Russell W. Hooper, Patricia D. Hough, Kenneth T. Hu, John D. Jakeman, Mo-
hammad Khalil, Kathryn A. Maupin, Jason A. Monschke, Elliott M. Ridgway, Ahmad Rushdi,
Laura P. Swiler, J. Adam Stephens, Dena M. Vigil, and Timothy M. Wildey.

Dakota’s use of the Quantification of Uncertainty for Estimation, Simulation, and Optimization
(QUESO) library is facilitated through close interaction with its developers at the University of
Texas at Austin. Ernesto E. Prudencio, Nicholas Malaya, and Damon McDougall have kindly
provided examples and test problems implemented in QUESO.

We also appreciate the efficient implementation of code changes to COBRA-TF made by Noel K.
Belcourt to expose code parameters to Dakota needed to drive the various COBRA-TF parameter
studies described in this manual.

David Salazar and Andrew Godfrey provided invaluable expertise which facilitated execution of
the Crud Induced Power Shift (CIPS) example of Chapter 8.

We express our deep thanks and gratitude towards North Carolina State High Performance
Computing (NCSU-HPC) for providing the required computer allocation to support the calculations
conducted in Appendix C, ROMUSE2.0 User Manual.

We appreciate the valuable feedback provided by several reviewers of version one of this manual,
including Patty Hough, Vince Mousseau, Rod Schmidt, and Dena Vigil.

This research was supported by the Consortium for Advanced Simulation of Light Water Re-
actors (http://www.casl.gov), an Energy Innovation Hub (http://www.energy.gov/hubs) for
Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy Contract No. DE-
AC05-00OR22725. Sandia National Laboratories (SNL), North Carolina State University (NCSU),
and Los Alamos National Laboratory (LANL) are core CASL partners.

CASL-U-2017-1445-000 7

http://www.casl.gov
http://www.energy.gov/hubs

Chapter 2

Application Example Problems

This chapter describes representative, though simplified, application problems that will be used to
demonstrate various Dakota approaches. Each of the five application examples has strengths to
help bridge abstract Dakota concepts and guidance throughout the remainder of this manual to
concrete practice:

• Cantilever beam: A simple static mechanics analysis where prescribed geometry, material
properties, and loads on a cantilevered beam map to quantities of interest such as weight,
displacement, and stress. The physical meaning is intuitive, the physics equations have a
simple algebraic form, and a simulator for it is included with Dakota, along with several
example input files. Each Dakota analysis technique in Chapters 3 through 6 includes a
worked example using the cantilever beam problem.

• General linear model: A model with closed algebraic form specifically designed to support
algorithm and code verification, i.e., to verify that VUQ algorithms are working as expected.
This example consists of a linear mapping from model parameters to responses, with an
additive noise term. It is used to verify the performance of Bayesian calibration methods in
Section 6.2.6.

• COBRA-TF thermal-hydraulics: A coupled physics, single assembly reactor model prob-
lem simulated with CASL’s COBRA-TF thermal-hydraulics code. A physically realistic exam-
ple, this problem demonstrates VUQ infrastructure for varying model form and other param-
eters, running a computational model, and distilling quantities of interest from code output.
This example is the focus of Chapter 7, where it is used to demonstrate parameter screening,
calibration, and surrogate construction. It also serves as the precursor for the next more
complicated CASL problem.

• Coupled COBRA-MPACT-MAMBA1D Crud Induced Power Shift: A coupled multi-
physics, single assembly reactor model problem simulated with CASL’s COBRA-TF, MPACT
(neutronics) and MAMBA1D (crud chemistry) codes coupled together. The most complex
physically realistic example, this problem employs the approach for the standalone COBRA-
TF UQ study now extended to one of the more challenging phenomena addressed in CASL,
Crud Induced Power Shift (CIPS). UQ results for this problem are described in Chapter 8.

• STAR-COBRA single bundle: Westinghouse non-mixing vane grid, single bundle exper-
iments simulated by the high-fidelity STAR-CCM+ CFD code and the low-fidelity COBRA-
TF subchannel code. This example is used to demonstrate the selection of a fixed budget of

CASL-U-2017-1445-000 8

computationally intense, validated high-fidelity calculations to efficiently calibrate uncertain
parameters in low-fidelity production codes. Chapter 9 presents results for this problem.

2.1 Cantilever beam

The cantilever beam example problem is adapted from the reliability-based design optimization
literature [49], [59]. The uniform cantilever beam is shown in Figure 2.1, with a left anchor and a
fixed length L = 100in. The beam width and thickness are parameterized by w and t, respectively.
The free end of the beam is subject to horizontal load X and vertical load Y .

Figure 2.1: Cantilever beam test problem.

Given Young’s elastic modulus E, the simplified algebraic physics equations used to model the
beam area A (a stand-in for weight W), stress S, and displacement D are:

W ∝ A = wt

S =
600

wt2
Y +

600

w2t
X (2.1)

D =
4L3

Ewt

√(
Y

t2

)2

+

(
X

w2

)2

.

Given a specified maximum displacement D0 and yield stress R, the quantities of interest for
the Dakota study (Dakota “responses”) are defined to be:

area = wt

stress = S −R =
600

wt2
Y +

600

w2t
X −R (2.2)

displacement = D −D0 =
4L3

Ewt

√(
Y

t2

)2

+

(
X

w2

)2

−D0,

where area is used as a surrogate for weight, and stress and displacement are defined as differences
with respect to the prescribed values of stress and displacement. The parameters in the problem
are summarized with their nominal values in Table 2.1. Parameters w and t have simple bounds,
while R,E,X, and Y may be considered as random variables and modeled with normal distributions
N (µ, σ2) when conducting uncertainty studies.

The built-in Dakota analysis driver mod_cantilever computes the outputs area, stress, and
displacement given specified inputs w, t, R, E, X, and Y . These cantilever input/output mappings
will be utilized throughout this manual to illustrate the application of core CASL VUQ technologies
with Dakota. In Section 3.2, the sensitivity of the quantities of interest with respect to the input
parameters is assessed to rank their importance and exercise the model.

Then, in Sections 4.1.1 and 4.2.1, response surface models (surrogates) for the parameter to
response mapping are generated based on a small number of sampled runs of cantilever. This

CASL-U-2017-1445-000 9

Table 2.1: Parameters for the cantilever beam problem.

parameter description nominal value range/distribution
w width 2.5 [1.0, 4.0]
t thickness 2.5 [1.0, 4.0]
R yield stress 40000 N (4.0E5, 4.0E6)

E Young’s modulus 2.9E7 N (2.9E7, 2.1025E12)

X horizontal load 500 N (500, 1.0E4)

Y vertical load 1000 N (1.0E3, 1.0E4)

L beam length 100 -
D0 maximum displacement 2.2535 -

emulates the practical process one must use when models are costly. In Section 5.2, a deterministic
design optimization problem is solved to design the beam geometry. The goal is to minimize the
weight (or equivalently, the cross-sectional area) of the beam subject to a displacement constraint
and a stress constraint. The parameters R, E, X, and Y are fixed at their nominal values and the
deterministic design problem is given by

minimize area = wt

subject to stress = S −R ≤ 0 (2.3)
displacement = D −D0 ≤ 0

1.0 ≤ w ≤ 4.0

1.0 ≤ t ≤ 4.0

In Section 5.2.1, the cantilever beam is calibrated to synthetic experimental data for area, stress, and
displacement, to find the values of w, t, and E yielding best agreement with the data. In Chapter 6,
the cantilever beam is utilized for both uncertainty quantification and Bayesian calibration. In
the uncertainty quantification study, the design variables are fixed at their nominal or optimal
values, and the Dakota study is conducted over the normally-distributed uncertain parameters R,
E, X, and Y . This yields estimates of the mean, standard deviation, and overall distribution of
the quantities of interest. In the Bayesian calibration study, synthetic data are generated and the
objective is to determine probability distributions for uncertain parameters given these data and
an initial assessment of uncertainty in these parameters. The performance of two algorithms for
sampling the final parameter distributions is compared for two cases.

2.2 General Linear Model Verification Test Suite

Whereas most CASL codes exhibit a nonlinear input-output relation, linearly parameterized prob-
lems serve an important role for algorithm and code verification. These uses include the following:

• They provide a hierarchy of models, which can be used to test the convergence of Bayesian
model calibration algorithms through comparison with analytic solutions.

• They provide a regime to test the accuracy of uncertainty propagation algorithms since one
can employ analytic relations between input and output densities.

CASL-U-2017-1445-000 10

• They facilitate the testing of algorithms for heavy-tailed distributions.

• They provide a framework for analytically testing algorithms to construct Sobol global sensi-
tivity indices (described in Section 3.1.2).

The family of linear models described in this section is used to verify the performance of Bayesian
calibration methods in Section 6.2.6. A high-level overview of the problem appears here, with
technical details relegated to Appendix A. A simulator implementing an even more comprehensive
verification test suite is available on request from the authors.

We employ the linear regression model

Y = Gβ + ε(λ, φ) (2.4)

as a test problem for verifying the Bayesian calibration capabilities in Dakota, which currently
include Quantification of Uncertainty for Estimation, Simulation, and Optimization (QUESO) and
Differential Evolution with Self-Adaptive Randomized Subspace Sampling (via the DREAM software
package). In this model Y is the N -dimensional vector of noisy observations of the quantity of
interest. The N × Nβ matrix G is known and the Nβ components of the vector β are unknown
regression parameters to be estimated. The N -dimensional random variable ε represents the random
noise in the observations. This noise is normally distributed with mean zero and N ×N covariance
matrix R(φ)/λ. The precision (inverse variance) λ of the ε process is a positive scalar and the
permissible values for the correlation structural parameter φ depend on the type of correlation
being considered as discussed below.

The data for the calibration problem is generated using (2.4) after selecting values for β, λ,
and φ which are considered the true parameter values (designated β0, λ0, and φ0). Appendix A.1
provides additional details on the data generation process. Table 2.2 summarizes two separate cases
distinguished by the choice of parameters to be calibrated (or equivalently, by the set of true values
considered to be known).

Case Calibrated Known
1 β λ0, φ0

2 β, λ φ0

Table 2.2: Cases considered for the general linear model verification test suite.

In Case 1, we estimate the regression parameters β assuming the statistics of the observational
errors are perfectly characterized. Case 2 removes explicit knowledge of the error ε precision λ. A
third case, described in Appendix A.1 but not considered further in this manual, assumes that the
correlation structure R(φ) of the observational errors is only qualitatively known and estimates its
parameters φ.

The likelihood function used in calibration is proportional to

λN/2

det (R(φ))1/2
exp

[
−λ

2
(y −Gβ)T R−1(φ) (y −Gβ)

]
.

For cases where the true value of λ is known, λ = λ0 is used for computing the likelihood. Similarly,
φ = φ0 in likelihood calculations when φ is known.

Each of the three cases has two subcases defined by whether an informative or noninformative
prior is specified for β. The informative prior weights the regression parameter space to indicate a

CASL-U-2017-1445-000 11

belief that the true parameters are more likely to lie within certain subsets of the parameter domain,
while the noninformative prior is agnostic with respect to the location of the regression parameters.

For Case 1, the informative prior for β is specified via a Gaussian random variable having fixed
Nβ-dimensional mean vector µ0 and diagonal Nβ ×Nβ covariance matrix

1

λ0

1
r1

0 · · · 0

0 1
r2
· · · 0

...
...

. . .
...

0 0 · · · 1
rNβ

 ,

where r1, . . . , rNβ are fixed positive hyperparameters.
In Case 2, the informative prior for β is the same as in Case 1, and λ0 replaced by a random

variable λ having Gamma prior density with parameters a > 0 and b > 0,

π(λ) =
ba

Γ(a)
λa−1 exp(−bλ) .

This distribution has mean a/b and variance a/b2. A noninformative prior for λ is found by taking
a = b = 0 in the Gamma density function, resulting in π(λ) ∝ 1/λ. This prior specification is
invariant to bijective transformation, i.e. it does not depend on how scale is represented in the error
process ε.

A noninformative prior for β specifies a uniform density π(β) ∝ 1. The Jeffreys noninformative
prior for (β, λ) in Case 2 is specified by π(β, λ) ∝ 1/λ, which is invariant to bijective transformations
of both location and scale parameters.

Under the assumption of independent and identically distributed errors εi, the sample means
of the parameters being calibrated converge to their corresponding true values as the number of
measurements, N , is increased. Furthermore, for any N and errors εi sampled from a mean-
zero process having arbitrary covariance structure, the distribution of parameters sampled from
QUESO converges to a probability distribution known analytically for (β, λ) when φ is fixed as
the number of QUESO samples is increased. Appendix A.1 provides a more general and rigorous
specification of prior distributions for the three cases as well as analytical results for calibrated
parameter distributions.

Two types of correlation structure are considered. The types and corresponding domain of φ
follow:

1. No correlation, no φ dependence.

2. Order 1 autoregressive correlation, −1 < φ < 1.

For each correlation type, a correlation function and the resulting correlation matrix R(φ) are pro-
vided in Appendix A.2. The no correlation case indicates no correlation between output measure-
ments and no dependence on φ. For order 1 autoregressive correlation, any two output measurements
yi, yj become less correlated the further apart they are in index (i.e., as |i− j| increases).

Qualitative comparisons of marginal posterior distributions obtained from Dakota MCMC sam-
ples to analytical solutions are made by visually inspecting plots of both distributions for each
uncertain parameter. A more rigorous assessment of Dakota MCMC tools is provided by conduct-
ing a statistical test of the hypothesis that joint posterior samples from Dakota MCMC and joint
posterior samples from the corresponding analytical solutions arise from the same multivariate dis-
tribution. Appendix A.3 describes the procedure based on energy statistics used in Section 6.2.6
for testing the equality of these two distributions.

CASL-U-2017-1445-000 12

2.3 COBRA-TF Thermal-Hydraulics Simulation Problem

This section provides an overview of COBRA-TF and a particular thermal-hydraulics simulation
problem, CASL VERA Progression Problem 6. An end-to-end demonstration of Dakota methods
using this COBRA-TF model is presented in Chapter 7, COBRA-TF VUQ Studies. The full
Dakota/COBRA-TF example is available in the CASL software repositories. Details on accessing
it are provided in Appendix B.

2.3.1 COBRA-TF Simulator Overview

COBRA-TF is a thermal-hydraulic (T/H) simulation code designed for light water reactor (LWR)
analysis) [5]. COBRA-TF has a long lineage back to the original COBRA computer code developed
in 1980 by Pacific Northwest Laboratory, under sponsorship of the Nuclear Regulatory Commission
(NRC). The original COBRA began as a thermal-hydraulic rod-bundle analysis code, but subsequent
versions have updated and expanded over the past several decades to cover almost all steady-
state and transient analyses of both pressurized water reactors (PWRs) and boiling water reactors
(BWRs). COBRA-TF is currently developed and maintained by the Reactor Dynamics and Fuel
Modeling Group (RDFMG) at the North Carolina State University (NCSU). Additional information
can be found at the RDFMG website, https://www.ne.ncsu.edu/rdfmg/cobra-tf.

COBRA-TF includes a wide range of thermal-hydraulic models important to LWR safety analy-
sis including flow regime dependent two-phase wall heat transfer, inter-phase heat transfer and drag,
droplet breakup, and quench-front tracking. COBRA-TF also includes several internal models to
help facilitate the simulation of realistic fuel assemblies. These models include spacer grid models,
a fuel rod conduction model, and built-in material properties for both the structural materials and
the coolant (i.e., steam tables).

COBRA-TF uses a two-fluid, three-field representation of the two-phase flow. The equations
and fields solved are:

• Continuous vapor (mass, momentum and energy)

• Continuous liquid (mass, momentum and energy)

• Entrained liquid drops (mass and momentum)

• Non-condensable gas mixture (mass)

Reasons for selecting COBRA-TF as the primary T/H solver in the VERA core simulator include:
reasonable run-times compared to CFD (although CFD will be available as an option), the fact
that it is being actively developed and supported by NCSU, ability to support future applications
of VERA such as transient safety analysis and BWR and SMR applications.

2.3.2 COBRA-TF test problem description

The thermal-hydraulics application example problem used in this manual is a coupled single assem-
bly problem known in CASL as Progression Problem 6 [42]. It simulates a single PWR assembly
based on the dimensions and state conditions of Watts Bar Unit 1 Cycle 1. The dimensions for the
assembly are identical to AMA Progression Benchmarks “Problem 3” and “Problem 6”. Problems 3
and 6 are identical, except that Problem 3 is at Hot Zero Power (HZP) and has no T/H feedback,
and Problem 6 is at Hot Full Power (HFP) and includes T/H feedback. The test case was run at a
boron concentration of 1300 ppm and a 100% power level.

CASL-U-2017-1445-000 13

https://www.ne.ncsu.edu/rdfmg/cobra-tf

The assembly is a standard 17x17 Westinghouse fuel design with uniform fuel enrichment. There
are no axial blankets or enrichment zones. The assembly has 264 fuel rods, 24 guide tubes, and
a single instrument tube in the center. There are no control rods or removable burnable absorber
assemblies in this problem. The primary geometry specifications of the fuel rod and guide tube
materials are given in Figure 2.2 and Table 2.3. The geometry specification for the assembly is
given in Figure 2.3 and Table 2.4. The thermal-hydraulic specifications for this problem are shown
in Table 2.5.

The COBRA-TF results in this CASL/Dakota manual use a simplified and more efficient adap-
tation of Progression Problem 6. This study involves only the thermal hydraulic component of
Progression Problem 6, holding constant the power supplied by the neutronics component in the
full problem. In practice, the neutronics component in the full problem has proved to be at least an
order of magnitude more computationally expensive than the thermal hydraulics component. This
adapted problem allows relatively rapid and representative sensitivity studies to be performed while
expediting testing and refinement of the CASL VUQ software toolset that drives these studies.

Figure 2.2: COBRA-TF Problem 6 fuel rod diagram.

2.3.3 VUQ Parameters in COBRA-TF Problem 6

At present, CASL VUQ workflows support COBRA-TF simulation parameter variation via two
mechanisms. The first allows Dakota to seamlessly integrate with the VERA Common Input tool
suite to perturb any parameters exposed to a user. The second path targets specific code parameters
in the thermal hydraulics code that represent physical phenomena modeled with closure laws in
COBRA-TF. These “VUQ parameters” are not exposed to a normal user but are instead exposed to
Dakota using an auxiliary input file. The principle is that most analyst users should only perturb
input data appearing in the VERA text input file, while advanced VUQ users may need to perturb
more advanced parameters such as closure laws. The COBRA-TF studies presented in Chapter 7
use the second mode of parameter variation, i.e. perturbing code parameters via the auxiliary file.

CASL-U-2017-1445-000 14

Figure 2.3: COBRA-TF Problem 6 assembly layout showing guide tubes and instrument tube
placement.

Table 2.3: COBRA-TF Problem 6 fuel rod and guide tube descriptions.
Parameter Value Units

Fuel Pellet Radius 0.4096 cm
Fuel Rod Clad Inner Radius 0.418 cm
Fuel Rod Clad Outer Radius 0.475 cm
Guide Tube Inner Radius 0.561 cm
Guide Tube Outer Radius 0.602 cm

Instrument Tube Inner Radius 0.559 cm
Instrument Tube Outer Radius 0.605 cm

Outside Rod Height 385.10 cm
Fuel Stack Height (active fuel) 365.76 cm

Plenum Height 16.00 cm
End Plug Heights (x2) 1.67 cm

Pellet Material UO2
Clad / Caps / Guide Tube Material Zircaloy-4

Table 2.4: COBRA-TF Problem 6 assembly specification.
Parameter Value Units
Rod Pitch 1.26 cm

Assembly Pitch 21.5 cm
Inter-Assembly Half Gaps 0.04 cm

Geometry 17x17
Number of Fuel Rods 264

Number of Guide Tubes 24
Number of Instrument Tubes 1

For each parameter, Dakota is able to apply perturbations representing combined shift and
scaling, e.g. for an arbitrary parameter p, Dakota can specify values for kp and kap which are used

CASL-U-2017-1445-000 15

Table 2.5: COBRA-TF Problem 6 nominal thermal-hydraulic conditions.
Parameter Value Units

Inlet Temperature 559 degrees F
System Pressure 2250 psia

Rated Flow (100% flow) 0.6824 Mlb/hr
Rated Power (100% power) 17.67 MWt

as follows:
p̄ = kp ∗ p+ kap (2.5)

The relevant parameters identified by Noel Belcourt and the COBRA-TF code team along with
brief descriptions taken from [43] are summarized in Table 2.6. The entries containing “(??)” in
their description were not documented in [43] but instead were inferred from the COBRA-TF source
code.

2.4 CIPS — Crud Induced Power Shift

This section summarizes the CASL CIPS problem to which the UQ approach described in detail in
Chapter 7 is extended in Chapter 8. CIPS is a coupled multi-physics phenomenon in which impuri-
ties (crud) present in the coolant deposit on the fuel pin cladding and absorb boron. The presence
of boron locally reduces moderation which suppresses power and shifts the power profile accord-
ingly. This phenomenon is modelled in CASL by treating the coupled effects of thermal hydraulics,
neutronics and crud chemistry using the VERA codes COBRA-TF, MPACT and MAMBA1D,
respectively. The interaction among the codes including data exchanged is shown in Figure 2.4.

Figure 2.4: Coupled codes to enable CASL CIPS simulations.

CASL-U-2017-1445-000 16

Table 2.6: Relevant COBRA-TF thermal-hydraulic code parameters identified by PIRT study.
cd Pressure loss coefficient of spacer in sub-channel
cdfb Pressure loss coefficient for sub-channel flow blockage (??)
cond Thermal conductivity of radial heat transfer
eta Fraction of vapor generation rate coming from the entrained liquid field
gama New time vapor generation rate in sub-channel
ql∗ Heat transfer rate to liquid in sub-channel
qliht Heat transfer due to drop impact (??)
qradd Radiative heat transfer rate from wall to entrained liquid
qradv Radiative heat transfer rate from wall to vapor
qv∗ Heat transfer rate to liquid in sub-channel
qvapl Incremental heat transferred from grid to vapor (??)
rodqq Externally supplied heat rate of current rod at current time step (axially averaged)
sdent Deposition mass flow rate in sub-channel
sent Entrainment mass flow rate in sub-channel
sphts Specific heat of radial heat transfer
tmasg Loss of mass of non-condensable gas in local axial fluid continuity cell

due to mixing and void drift to radially adjacent fluid cells
tmasl Loss of mass of continuous liquid in local axial fluid continuity cell

due to mixing and void drift to radially adjacent fluid cells
tmasv Loss of mass of vapor in local axial fluid continuity cell

due to mixing and void drift to radially adjacent fluid cells
tmome Loss of momentum of droplets in sub-channel

due to mixing and void drift to radially adjacent fluid cells
tmoml Loss of momentum of continuous liquid in sub-channel

due to mixing and void drift to radially adjacent fluid cells
tmomv Loss of momentum of vapor in sub-channel

due to mixing and void drift to radially adjacent fluid cells
tnrgl Loss of enthalpy of liquid in local axial fluid continuity due to mixing

and void drift to radially adjacent fluid cells
tnrgv Loss of enthalpy of vapor in local axial fluid continuity due to mixing

and void drift to radially adjacent fluid cells
wkr Lateral gap pressure loss coefficient
xk Vertical interfacial drag coefficient between the continuous liquid and vapor phases
xkes Sink interfacial drag coefficient between the liquid and vapor phases
xkge Vertical interfacial drag coefficient between the entrained liquid and vapor phases
xkl Transverse interfacial drag coefficient between the continuous liquid and vapor phases
xkle Transverse interfacial drag coefficient between the entrained liquid and vapor phases
xkvls Sink interfacial drag coefficient between the continuous liquid and vapor phases
xkwew Transverse entrained liquid form loss coefficient
xkwlw Transverse liquid wall drag coefficient
xkwlx Vertical liquid wall drag coefficient
xkwvw Transverse vapor wall drag coefficient
xkwvx Vertical vapor wall drag coefficient

CASL-U-2017-1445-000 17

A PIRT study for CIPS was conducted to identify all potentially influential parameters affecting
the two quantities of interest. For parameters available through normal input, e. g. via the VERA
Common Input, the following list summarizes expert opinion for the CIPS problem:

• Temperature uncertainty ± 5 F, normal distribution

• Pressure uncertainty ± 50 psi, normal distribution (there is also a 20 psi bias not included so
the total uncertainty is ± 70 psi instead)

• Coolant chemistry (to be provided later for MAMBA1D, consistent with the current input to
BOA calc)

• Core Average Power uncertainty is ± 0.6%, normal distribution

• Single Assembly Power Uncertainty is ± 4%, normal distribution

• Boron uncertainty; this is a measured value so ± 5 ppm should be acceptable, assumed uniform
distribution

• Core Average Flow uncertainty is 2%, normal distribution

• Fuel average density uncertainty is typically within ± 0.5% of target (for example target 95%
TD, final 95.5%), assumed normal distribution

• Fuel region average enrichment uncertainty is typically within ± 0.05 wt% of target (example
target 3% U235, final 3.05%), assumed normal distribution

• Local Heat Flux uncertainty is ± 3% uncertainty to account for manufacturing uncertainties,
normal distribution

This information is incorporated into the VUQ workflow by exposing the corresponding input
parameters shown Table 2.7 to Dakota. The table includes the unit conversions needed in moving
from the native VERA Input file (.inp) to the intermediate XML format (*.xml) where Dakota
parameter manipulations are performed.

The notation in the fourth column represents the following:

• The ’+’ symbol prefix for entries under f8.xml indicates an additive perturbation.

• The ’*’ symbol prefix indicates a scaling perturbation.

• The use of an index, [#], in the enrichments perturbations indicates perturbations applied
only to the first value of the enrichment array.

It should be noted that not all of the parameters identified as potentially relevant in the PIRT
have been included. These are Coolant Chemistry, Boron and Local Heat Flux. Perturbations to
Boron require augmenting the current tools used in VUQ. There is currently no parameter for Local
Heat Flux in VERA Input though its effect is related to the resulting power distribution. The
Coolant Chemistry sensitivity is addressed by the MAMBA1D parameters described next.

The MAMBA1D Coolant Chemistry parameters are treated in the same manner as the COBRA-
TF closure parameters, i.e. an auxiliary file is used to impose perturbations via (2.5). The current
set of parameters is summarized in Table 2.8. Note that baseline values are not reported in order to
prevent disclosure of potentially proprietary information. At the time of this study, the MAMBA1D
Theory Manual had not been made available, but it has since been disseminated and can be consulted
for more detailed information on the parameters [26].

CASL-U-2017-1445-000 18

Table 2.7: Important VERA Common Input CIPS parameters with nominal values.
Parameter f8.inp Value f8.xml Value

Temperature tinlet 556.4 ± 5 +STATES/State_1/ 291.33 ± 2.78
F tinlet C

Pressure pressure 2250 ± 70 +STATES/State_1/ 15.513 ± 0.483
psia pressure MPa

Power rated 17.922 ± 4% *CORE/rated_power 17.922 ± 4%
(first value) MW MW

Flow rated 0.7047 ± 2% *CORE/rated_flow 88.79 ± 2%
(second value) Mlbs/hr kg/s

Fuel *ASSEMBLIES/
avg. den. Fuel U43 (95.585 ± 0.5)% Assembly_B9B-128I/ (95.585 ± 0.5)%

(second value) Fuels/Fuel_U43/thden
Fuel *ASSEMBLIES/

avg. den. Fuel BLK (95.459 ± 0.5)% Assembly_B9B-128I/ (95.459 ± 0.5)%
(second value) Fuels/Fuel_BLK/thden

Fuel 3.1 +ASSEMBLIES/
avg. fuel U43 u-234=0.0395 Assembly_B9B-128I/ (3.1 ± 0.05) %

enrich. u-236=0.0044 Fuels/Fuel_BLK/
enrichments[1]

Fuel 2.7 +ASSEMBLIES/
avg. fuel BLK u-234=0.029 Assembly_B9B-128I/ (2.7 ± 0.05) %

enrich. u-236=0.0036 Fuels/Fuel_BLK/
enrichments[1]

2.5 Non-mixing vane single bundle experiments

This example employs non-mixing vane (NMV) grid, single bundle experiments from Westinghouse.
The axial geometry and location of grid spacers are depicted in Figure 2.5(a). Figure 2.5(b) displays
a cross-section of the rod bundle used during the experiments. The bundle is comprised of 5 NMV
grids in the heated length with 36 subchannels and 25 rods in a 5× 5 array. The 6 rods highlighted
in red in Figure 2.5(b) are the hot rods. All of the rods are electrically heated, but the hot rods
have a higher power than the other rods.

Data from 23 experiments was provided by Westinghouse with two omitted from subsequent
analysis to ensure that the test cases remain single phase. Westinghouse reported that there was a
±6oF (3.333oC) repeatability error (two standard deviations) on the experimental temperatures in
addition to an uncertain amount of experimental error. Extensive validation, sensitivity analysis,
and uncertainty quantification work was performed on STAR-CCM+ [15] and COBRA-TF [17] to
establish confidence that both codes are generating reliable calculations of this experimental setting.

STAR-CCM+ simulations of this application were run on Falcon at Idaho National Laboratory
and each simulation required approximately 1000 core hours. It was determined that STAR-CCM+
is correctly conserving mass, momentum and energy for this application, validating that the code is
correctly configured for the considered simulation regimes. STAR-CCM+ was compared to all 21
tests utilized from the Westinghouse database. It was observed that the channel center temperature
measurements have a lower L2 norm value relative to the channel average temperatures, which was
anticipated since the channel center temperatures – collected by probes at the center of the channels
– more closely approximate the experimental data locations. Hence channel center temperatures
were taken from STAR-CCM+ as needed in the design process summarized in the next paragraph.

The design process described in Chapter 9, referred to as “Hi2Lo", utilized optimally chosen

CASL-U-2017-1445-000 19

Table 2.8: Relevant MAMBA1D parameters (without nominal values).
Bfract Threshold for fracton of CRUD that is precipitate
Bthresh Boron mass precipitation threshold
Cpor Crud porosity (unitless)

crud_solid Nominal solid crud density (g/cm3)
Dc Effective B Diffusion coefficient (cm2/s)

delta_r Nominal minimum length scale (cm)
fac Scaling factor (parameterized value) unitless
Hc Chimney heat transfer coefficient W/(cm2 K)
Hfg Heat of water vaporization (J/g)
kp2 Subcooled nucleate boiling enhancement to deposition rate
MB atomic mass of boron (g/mole)
MB10
MB11
MFe
mit0 First of 5 constants in a MIT correlation for coolant density in CRUD

mitMax maximum temperature for which the correlation is valid
MLi
MNi
Nc Chminey density #/cm2

rc Chimney radius in cm
RtcB Boiling value (calibrated value)
RtcB2 Intermediate Boiling values (calibrated value)
RtcB3 Intermediate Boiling values (calibrated value)
RtcB4 Intermediate Boiling values (calibrated value)
RtcB5 Intermediate Boiling values (calibrated value)
RtcB6 Intermediate Boiling values (calibrated value)
RtcNB Non-boiling Crud thermal resistance (K*m2/W)
Tsat Saturation temperature in deg C

(a) (b)

Figure 2.5: (a) Axial view of experimental geometry and (b) cross-section of Westinghouse NMV
experiments.

CASL-U-2017-1445-000 20

STAR-CCM+ simulations of the channel center temperatures corresponding to the 36 subchannel
temperatures in this application to sequentially calibrate the uncertain turbulent mixing parameter
β in COBRA-TF. Since COBRA-TF does not have turbulence models, β is tuned to accommodate,
to the degree possible, turbulence effects incorporated in STAR-CCM+ and observed in experimen-
tal data. The four design (configuration) variables specifying the experimental conditions to be
simulated are the exit pressure, inlet temperature, inlet mass flow rate, and average linear heat rate
per rod. The Hi2Lo process uses a candidate list of configuration settings, each defined in terms of
these four variables, over which sequential design optimization for COBRA-TF β calibration occurs.

The Hi2Lo process also requires an estimate of uncertainty in these temperatures. This was ob-
tained by propagating six perturbations of the experimental conditions for one of the Westinghouse
tests (mass flow rate, total power distribution), along with choice of turbulence model, through
STAR-CCM+. The standard deviations of the 36 channel center temperatures resulting from these
six cases, multiplied by 10 to account conservatively for unrepresented sources of uncertainty, were
then used in both the generation of calibration data and as estimates of residual uncertainty in the
calibration of β.

Some key assumptions underlying the COBRA-TF simulations are that the results are at steady-
state and that no additional cross-flow effect modeling is needed. COBRA-TF is also a two-phase,
compressible code; however, since the flow parameters configure the STAR-CCM+ and COBRA-
TF simulations in the single-phase regime, it can be assumed that COBRA-TF behaves similarly
to the single-phase, polynomial density STAR-CCM+ model. The NMV COBRA-TF model input
deck uses symmetric input parameters, which results in symmetric flow as with the STAR-CCM+
simulations. The COBRA-TF output quantities of interest, tuned to the STAR-CCM+ channel
center temperatures via calibration of β, are the 36 subchannel average outlet temperatures.

CASL-U-2017-1445-000 21

Chapter 3

Sensitivity Analysis

Broadly, the primary goal of sensitivity analysis is to determine which input parameters most
influence computational model responses, or deterministic quantities of interest. A ranked list of
parameter influences can focus resources for data gathering or model/code development, or can
make calibration, optimization, or uncertainty quantification more tractable over a reduced set of
parameters. In a post-optimization role, sensitivity information is useful for determining whether
or not the response functions are robust with respect to small changes in the optimum design point.
The Dakota sensitivity analysis studies, recommended in this chapter, have important secondary
benefits as well: (1) they can help identify key model characteristics such as smoothness, nonlinear
trends, and robustness to enable selection of suitable Dakota methods for follow-on studies; and
(2) some yield sampling designs that can be used to construct the surrogate models described in
Chapter 4 for subsequent analyses.

In the CASL context, a phenomena identification and ranking table (PIRT) might help identify
the superset of parameters to consider in a sensitivity analysis study. Then the relative parameter
rankings resulting from a Dakota-driven sensitivity study form the basis of a quantitative PIRT,
or QPRT. These results could also help prioritize model development or data gathering, or identify
insensitive parameters to omit from calibration or UQ studies.

3.1 Terminology

This section introduces key sensitivity analysis terminology and defines the metrics typically used
to assign relative ranks to parameter influences on a response.

3.1.1 Local Versus Global Sensitivity

Dakota primarily focuses on sensitivity analysis in a global sense; i.e., over the whole valid parameter
domain. We contrast that here with more traditional local or partial derivative-based sensitivity
analysis.

Local Sensitivity: In some instances, the term sensitivity analysis is used in a local sense to
denote the computation of response derivatives with respect to parameters at a nominal value. These
local derivatives can then be used to make design decisions or rank parameter influences. Dakota
supports this type of study through numerical finite-differences or retrieval of analytic gradients
computed within the analysis code. The desired gradient data is specified in the responses section
of the Dakota input file and the collection of this data at a single point is accomplished through a
parameter study method with no steps.

CASL-U-2017-1445-000 22

This approach to sensitivity analysis should be distinguished from the activity of augmenting
analysis codes to internally compute derivatives using techniques such as direct or adjoint differen-
tiation, automatic differentiation (e.g., ADIFOR), or complex step modifications. These sensitivity
augmentation activities are completely separate from Dakota and are outside the scope of this man-
ual. However, once completed, Dakota can utilize these analytic gradients to perform optimization,
uncertainty quantification, and related studies more reliably and efficiently. In CASL, some simu-
lation codes, such as TSUNAMI, have adjoint capabilities and can return not only function values,
but also derivative data to Dakota, thus enhancing analyses.

Global Sensitivity: In other instances, the term sensitivity analysis is used in a more global
sense to denote the investigation of variability in the response functions over the whole valid range
of the input parameters. Dakota supports this type of study through computation of response data
sets at a series of sample design points in the parameter space. The series of points is typically
defined using a parameter study or a design and analysis of computer experiments (DACE) design,
such as orthogonal arrays or space filling Monte Carlo sampling. These more global approaches
to sensitivity analysis can be used to obtain trend data even in situations when gradients are
unavailable, unreliable, or not indicative of global trends.

This chapter offers guidance solely on Dakota’s global sensitivity analysis procedures. Using
them typically consists of:

1. Specifying ranges for each parameter and a sensitivity analysis method in the Dakota input

2. Running Dakota which will:

(a) construct a sampling design in the parameter hypercube;
(b) run the computational model at these points, collecting returned response data; and
(c) calculate and output sensitivity metrics to rank inputs.

3. Post-processing the Dakota-generated parameter/response table with external statistics and
visualization tools to further assess trends and which input factors most strongly influence the
responses

3.1.2 Sensitivity Metrics

Sensitivity metrics output by Dakota are used to assess the relative influence of or rank parameters.
The metrics output by Dakota can vary in the manner discussed in Section 3.2, but may include
the following.

• Correlation coefficients: Dakota prints correlation tables with the simple (Pearson), par-
tial, and rank (Spearman) correlations between inputs and outputs. These are all bounded
between -1 and 1 and measure the strength of the linear relationship between the considered
variables. These can be useful to get a quick sense of how correlated the inputs are to each
other, and how correlated various outputs are to inputs, but can be misleading for detect-
ing nonlinear relationships. For example a model with a perfectly quadratic input/output
relationship centered at zero would have zero correlation thus obscuring the actual strong
nonlinear relationship.

The simple correlations are Pearson’s correlation coefficient, which is defined for two factors
w and x (where each of these could represent an input or an output) as

Corr(w, x) =

∑
i(wi − w̄)(xi − x̄)√∑

i(wi − w̄)2
∑

i(xi − x̄)2
.

CASL-U-2017-1445-000 23

Partial correlation coefficients are similar, but measure correlation while adjusting for the
effects of other variables. For example, in a problem with two inputs and one output, where
the two inputs are highly correlated, the correlation of the second input and the output may
be very low after accounting for the effect of the first input. The rank correlations in Dakota
are obtained using Spearman’s rank correlation. Spearman’s rank is the same as the Pearson
correlation coefficient except that it is calculated on the rank data. Rank correlation can be
more informative when responses vary over orders of magnitude. The correlation analyses are
explained further in the Uncertainty Quantification chapter of the Dakota User’s Manual. [1]

• Morris metrics [36] are computed from “elementary effects” based on a sample design of
large steps around the parameter space. Here each dimension of a M−dimensional input
space is uniformly partitioned into p levels, creating a grid of pM points x ∈ <M at which
evaluations of the model y(x) might take place. An elementary effect corresponding to input
i is computed by a forward difference

di(x) =
y(x+ ∆ei)− y(x)

∆
, (3.1)

where ei is the ith coordinate vector, and the step ∆ is typically taken to be large (this is not
intended to be a local derivative approximation); e.g., for an input variable scaled to [0, 1],
∆ = p

2(p−1) , so the step is slightly larger than half the input range. We note that users may
obtain improved results for some problems with smaller stepsizes.

The distribution of elementary effects di over the input space characterizes the effect of input
i on the output of interest. After generating N samples from this distribution, their mean,

µi =
1

N

N∑
j=1

d
(j)
i , (3.2)

modified mean

µ∗i =
1

N

N∑
j=1

|d(j)
i |, (3.3)

(using absolute value) and standard deviation

σi =

√√√√ 1

N − 1

N∑
j=1

(
d

(j)
i − µi

)2
(3.4)

are computed for each input i. The mean and modified mean give an indication of the overall
effect of an input on the output. Standard deviation indicates nonlinear effects or interactions,
since it is an indicator of elementary effects varying throughout the input space.

• Sobol indices: Dakota can compute sensitivity indices via Variance-based Decompositions
(VBD). A variance-based decomposition is a global sensitivity method that quantifies how the
uncertainty in model output can be apportioned to uncertainty in individual input variables.
VBD uses two primary measures, the main effect sensitivity index Si and the total effect
sensitivity index Ti. The main effect sensitivity index corresponds to the fraction of the
total uncertainty in the output, Y , that can be attributed to input xi alone. The total effect
sensitivity index corresponds to the fraction of the total uncertainty in the output, Y , that can
be attributed to input xi and its interactions with other variables. The main effect sensitivity

CASL-U-2017-1445-000 24

index compares the variance of the conditional expectation V arXi [E(Y |Xi)] against the total
variance V ar(Y).

Formulas for the indices are:
Si =

V arXi [E(Y |Xi)]

V ar(Y)
(3.5)

and
Ti =

EX−i [V ar(Y |X−i)]
V ar(Y)

=
V ar(Y)− V arX−i [E(Y |X−i)]

V ar(Y)
(3.6)

where Y = f(x) and x−i = (x1, ..., xi−1, xi+1, ..., xM). The calculation of Si and Ti requires the
approximation of M -dimensional integrals which are typically approximated by Monte-Carlo
sampling.

When using VBD, a rough guide is that variables with main effect indices greater than
100/M% are significant as they can be considered to have greater than average effect on
output variability, barring higher-order interactions. More details on the calculations and
interpretation of the sensitivity indices can be found in [44].

• Main effects quantify the effects of a single variable, averaging across the effect of other
input variables. For a full factorial design, with each of M inputs taking on p levels, the main
effect of input variable xi is calculated at each level k = 1, ..., p it takes on as

mk
i =

1

pM−1

∑
x

y(x|xi = xki).

To calculate main effects with Dakota, one can either use (1) the orthogonal array method
from DDACE with the supplementary command main_effects, or (2) a grid parameter study,
which has to be post-processed to compute main effects in an external statistics tool.

Supplementary Approaches: Running any of the parameter study, design of experiments,
or sampling methods allows the user to save the results in a tabular data file, which then can be
read into a spreadsheet or statistical package for further analysis. One example of this is the well-
known technique of scatter plots, in which the set of samples is projected down and plotted against
one parameter dimension, for each parameter in turn. Scatter plots with a uniformly distributed
cloud of points indicate parameters with little influence on the results, whereas scatter plots with
a defined shape to the cloud indicate parameters which are more significant. Related techniques
include analysis of variance (ANOVA) [38] and main effects analysis, in which parameters having
the greatest influence on the output are identified from sampling results. Scatter plots and ANOVA
may be accessed through import of Dakota tabular results into external statistical analysis programs
such as R (http://www.r-project.org) and Minitab (http://www.minitab.com).

3.2 Recommended Methods

This section summarizes a few recommended Dakota sensitivity analysis methods at a high level
and provides input file examples, resulting output, and post-processing/visualization approaches
that can help. The choice of method will depend on the analysis goal and available computational
budget. We begin with high-level best practices before delving into examples of specific methods.

We almost always recommend starting with simple centered parameter studies that yield
univariate effects only. Do this first with small perturbations, then large variations that span the
parameter space. These simple studies test the model interface, assess the relative smoothness of

CASL-U-2017-1445-000 25

http://www.r-project.org
http://www.minitab.com

the response, and assess model robustness over single parameter variations. These studies readily
determine the effect of a single parameter in a practical way, as they are automated versions of
typical “perturb ±5%, ±10%” studies that analysts manually conduct.

The type of follow-on sensitivity study to conduct depends on simulation budget and goal. The
cost for various methods is shown in Table 3.1, together with the key metrics that they yield. Here
M is the number of input parameters studied, p a user-specified number of increments or partitions
in each variable (often taken to be p = 3), N a total number of samples in a single Latin hypercube
sampling (LHS) replicate, and k a number of replicates (often k = 4) which may be needed to
evaluate the formulas for Sobol indices from Section 3.1.2.

Table 3.1: Key sensitivity analysis methods with the metrics they produce, roughly ordered by
increasing computational cost. M : number of parameters, p: increments per variables, N : total
samples in a single replicate, k: number of replicates.
method design points metrics

centered parameter study (Sec. 3.2.1) p×M + 1 univariate effects
global LHS sampling (Sec. 3.2.3) N = 2×M to 10×M Pearson, partial,

Spearman correlations
PSUADE/Morris (Sec. 3.2.4) k × (M + 1), with p odd elementary effects
VBD/Sobol (none) N × (M + 2) Sobol main/total effects
full factorial/grid (Sec. 3.2.2) pM correlations, main effects

A global LHS sampling study is the most common follow-on study, ideally with N = 10×M ,
but possibly as few as N = 2 ×M , samples. Global LHS sampling has the benefit of reuse of the
sample points for follow-on surrogate construction. Dakota directly outputs correlation coefficients,
which when large can indicate parameters surely influencing the response; useful for inclusion-based
screening. It also yields data for constructing scatter plots in post-processing analysis. Parameter
effects can be confounded, so it can be hard to extract univariate effects, but one can get a good
idea of the effect of joint variation with modest samples.

If point reuse or scatter plot diagnostics are not a primary consideration, PSUADE/Morris
designs offer more inference power, with a similar cost, to LHS designs by facilitating quantitative
detection of nonlinear or interaction effects in addition to main effects.

Variance-based decomposition (VBD/Sobol) analysis can offer even more information.
This uses replicate LHS or a surrogate (possibly stochastic polynomial approximations as described
in Section 6.1.2) to perform a variance-based decomposition that apportions output variance to
input factors. The resulting Sobol indices for main and total effects (described in Section 3.1.2)
can be helpful for up front sensitivity analysis, when an “80/20" principle applies: fewer than 20
percent of the parameters explain at least 80 percent of total output variance. In this case, one can
quickly screen with relatively few model runs. However, this approach is challenging in the presence
of strong interactions, due to the potentially substantial data requirements for accurate inference of
Sobol indices. Strong interactions are suggested by differences in partial versus simple correlations
or main versus total effects in Sobol indices.

For modest numbers of parameters and reasonable model run cost, one can conduct full facto-
rial parameter studies with Dakota’s grid/multidimensional parameter study or fractional factorial
orthogonal array (OA) designs with DACE OA. These can assess main effects of each parameter,
even when considering them jointly. A two-level Plackett-Burman design can be good for extremely
slow codes, where the number of runs (N = M + 1) is severely limited. However these methods are
not currently available in Dakota.

CASL-U-2017-1445-000 26

3.2.1 Centered Parameter Study

The centered parameter study executes multiple coordinate-based parameter studies, one per pa-
rameter, centered about the specified initial values. This is useful for investigation of function
contours in the vicinity of a specific point and is a very common model exploration technique where
each parameter is increased and decreased by a fixed increment. A set of widely-spaced points in
a centered or multidimensional parameter study could be used to determine whether the response
function variation is likely to be unimodal or multimodal. A set of closely-spaced points in a cen-
tered parameter study could also be used to assess the smoothness of the response functions in
order to select a suitable finite difference step size for optimization/calibration (see an example of
their use in Listing 5.1 in Section 5.2.1). After computing an optimum design, a parameter study
could also be used for post-optimality analysis in verifying that the computed solution is actually
at a minimum or constraint boundary and in investigating the shape of this minimum or constraint
boundary. (In a parameter study, one may optionally enable Dakota’s numerical gradient estimation
to calculate local derivative values at each point in the parameter space, but the results are only
published to the Dakota console text output, not the tabular data file.)

Dakota Input: This method requires two settings: (1) step_vector, a list of real values,
each of which specifies the size of the increment or perturbation for a single variable; and (2)
steps_per_variable, a list of integers that specifies the number of increments pi per variable in
each of the positive and negative coordinate directions. Centered parameter studies are typically
conducted with pi = 5 positive and negative increments of each parameter. The total number of
samples required is N = 1 +

∑M
i=1 2pi. step_vector specifies absolute variable steps for continuous

and discrete range variables, but for studies conducted over integer or real discrete set variables (see
“Design Variables” in the Dakota Reference Manual [2]), specifies perturbations in index offsets to
select from the possible set values. For example, with initial values of (1.0, 1.0), a step_vector
of (0.1, 0.1), and a steps_per_variable of (2, 2), the center point is evaluated followed by four
function evaluations (two negative deltas and two positive deltas) per variable. This set of points
in parameter space is shown in Dakota screen output in Figure 3.1 and graphically in Figure 3.2.

Dakota Input for Cantilever: A sample Dakota input file for a centered parameter study
with the cantilever beam application is shown in Listing 3.1. Note the previously discussed method
controls for centered_parameter_study in lines 9–11, that all the variables are active (line 18), and
that the evaluations will be saved to the tabular data file specified on line 3. The centered study is
fully characterized by the initial values and steps for the variables (lines 21 and 25, 10 and 11).

Results and Discussion: The results of the study are depicted in Figure 3.3, where the tabular
data generated by Dakota (cantilever_centered.dat) has been plotted with Matlab. These plots
show that only w and t affect area /weight (the plots for these two variables overlay each other).
For the stress and displacement, w and t have the strongest effect, and possibly a nonlinear one as
evidence by the curvature in their traces. E andX have a small, but nonzero effect. All input/output
relationships appear smooth (no noise or other oscillation is evident). These observations can be
verified by studying the equations for the static cantilever problem.

3.2.2 Multidimensional Parameter Study

The multidimensional parameter study computes response data sets for anM -dimensional hypergrid
of input points. This full factorial design is powerful in determining main effects and potential
interactions among parameters, but the number of simulation runs quickly becomes prohibitive as
the dimension M of the parameter space increases. It is presented here mainly because it’s easily
understandable and tractable/useful for small dimensional problems.

CASL-U-2017-1445-000 27

Listing 3.1: Dakota input file showing centered parameter study on the cantilever beam problem.
1 environment

tabular_data
3 tabular_data_file ’cantilever_centered.dat ’

custom_annotated header eval_id
5

method
7

do a parameter study in coordinate directions over all 6 parameters
9 centered_parameter_study

step_vector 0.1 0.1 10 100 10 100
11 steps_per_variable 2

13 variables

15 # by default , a parameter study won ’t operate on state parameters
can change that default behavior be explicitly specifying which

17 # parameters to use (here "all")
active all

19

continuous_design = 2
21 initial_point 1.0 1.0

descriptors ’w’ ’t’
23

continuous_state = 4
25 initial_state 40000. 29.E+6 500. 1000.

descriptors ’R’ ’E’ ’X’ ’Y’
27

interface
29 direct

analysis_driver = ’mod_cantilever ’
31

responses
33 num_objective_functions = 3

response_descriptors = ’area ’ ’stress ’ ’displacement ’
35 no_gradients

no_hessians

CASL-U-2017-1445-000 28

Parameters for function evaluation 1:
1.0000000000e+00 d1
1.0000000000e+00 d2

Parameters for function evaluation 2:
8.0000000000e-01 d1
1.0000000000e+00 d2

Parameters for function evaluation 3:
9.0000000000e-01 d1
1.0000000000e+00 d2

Parameters for function evaluation 4:
1.1000000000e+00 d1
1.0000000000e+00 d2

Parameters for function evaluation 5:
1.2000000000e+00 d1
1.0000000000e+00 d2

Parameters for function evaluation 6:
1.0000000000e+00 d1
8.0000000000e-01 d2

Parameters for function evaluation 7:
1.0000000000e+00 d1
9.0000000000e-01 d2

Parameters for function evaluation 8:
1.0000000000e+00 d1
1.1000000000e+00 d2

Parameters for function evaluation 9:
1.0000000000e+00 d1
1.2000000000e+00 d2

Figure 3.1: Dakota output showing function evaluations for a centered parameter study with two
positive and two negative steps per variable.

For these studies, each variable is partitioned into equally spaced intervals between its upper
and lower bounds, and each combination of the values defined by these partitions is evaluated. The

Figure 3.2: Notional example of centered parameter study over two parameters d1 and d2.

CASL-U-2017-1445-000 29

−2 −1 0 1 2
0.8

0.9

1

1.1

1.2

1.3

w
ei

g
h

t

−2 −1 0 1 2
0.6

0.8

1

1.2

1.4
x 10

6

st
re

ss

w
t
R
E
X
Y

−2 −1 0 1 2
50

100

150

200

250

300

d
is

p
l

param step

Figure 3.3: Cantilever beam: univariate effects from centered parameter study of each of six pa-
rameters on each of three responses.

number of function evaluations performed in the study is:

M∏
i=1

(partitionsi + 1) (3.7)

Dakota Input Example: The partitions information is provided using the partitions speci-
fication, which inputs an integer list of the number of partitions for each variable (i.e., partitionsi).
Since the initial values will not be used, they need not be specified.

CASL-U-2017-1445-000 30

In a two variable example problem with d1 ∈ [0,2] and d2 ∈ [0,3] (as defined by the upper
and lower bounds from the variables specification) and with partitions = (2,3), the interval [0,2]
is divided into two equal-sized partitions and the interval [0,3] is divided into three equal-sized
partitions. This two-dimensional grid, shown notionally in Figure 3.4, would result in the twelve
function evaluations shown in Figure 3.5. See the first example in the Dakota User’s Manual [1]:
Tutorial for additional notes to understand this study.

Figure 3.4: Example of multidimensional parameter study.

Dakota Input for Cantilever: Listing 3.2 shows a Dakota input file prescribing a multidi-
mensional parameter study for the cantilever beam problem. On line 10, 9 partitions are specified
for w and 6 for t, resulting in 10× 7 = 70 total model evaluations in the (w, t) space. The parame-
ters R,E,X, and Y are held at nominal values using Dakota’s state variable mechanism, as active
all is commented on line 16. In contrast to the centered parameter study, the active variables are
characterized by their lower and upper bounds (lines 19–20).

Results and Discussion: When resources allow a grid parameter study to be conducted,
one resulting advantage is that main effects can be calculated. An example is shown in Fig-
ure 3.6. In this example, the main effects for w and t are generated by post-processing Dakota’s
cantilever_grid.dat file using external statistical and plotting software. The left subplot shows
the main effect of w, that is the relationship between w and the mean of the displacement, taken
over all realization of the other variable t. We observe a smooth, nonlinear effect. Similar is true
for the main effect of t in the right subplot.

The plot shown here was generated using Minitab statistical software, but SAS (http://www.
sas.com), JMP (www.jmp.com), R (http://www.r-project.org), Minitab (http://www.minitab.
com), Matlab (http://www.mathworks.com/products/matlab), and other tools can produce similar
graphics. Therefore we recommend CASL analysts use the tools present in the computing environ-
ment at their institution. Grid parameter studies also output correlation coefficients, discussed at
greater length in the next section.

3.2.3 Global LHS Sampling

Monte Carlo sampling methods, including Latin hypercube sampling (LHS), are discussed in more
detail in Chapter 6, Uncertainty Quantification. For sensitivity analysis with global sampling,

CASL-U-2017-1445-000 31

http://www.sas.com
http://www.sas.com
www.jmp.com
http://www.r-project.org
http://www.minitab.com
http://www.minitab.com
http://www.mathworks.com/products/matlab

Listing 3.2: Dakota input file showing grid parameter study on the cantilever beam problem.
environment

2 tabular_data
tabular_data_file ’cantilever_grid.dat ’

4 custom_annotated header eval_id

6 method

8 # conduct grid parameter study with 10 values for width , 7 for thickness
multidim_parameter_study

10 partitions = 9 6

12 variables

14 # default is to perform the study over the design variables , leaving
state fixed; could override to do all variables with:

16 ## active all

18 continuous_design = 2
lower_bounds 1.0 1.0

20 upper_bounds 4.0 4.0
descriptors ’w’ ’t’

22

continuous_state = 4
24 initial_state 40000. 29.E+6 500. 1000.

descriptors ’R’ ’E’ ’X’ ’Y’
26

interface
28 direct

analysis_driver = ’mod_cantilever ’
30

responses
32 num_objective_functions = 3

response_descriptors = ’area ’ ’stress ’ ’displacement ’
34 no_gradients

no_hessians

CASL-U-2017-1445-000 32

Parameters for function evaluation 1:
0.0000000000e+00 d1
0.0000000000e+00 d2

Parameters for function evaluation 2:
1.0000000000e+00 d1
0.0000000000e+00 d2

Parameters for function evaluation 3:
2.0000000000e+00 d1
0.0000000000e+00 d2

Parameters for function evaluation 4:
0.0000000000e+00 d1
1.0000000000e+00 d2

Parameters for function evaluation 5:
1.0000000000e+00 d1
1.0000000000e+00 d2

Parameters for function evaluation 6:
2.0000000000e+00 d1
1.0000000000e+00 d2

Parameters for function evaluation 7:
0.0000000000e+00 d1
2.0000000000e+00 d2

Parameters for function evaluation 8:
1.0000000000e+00 d1
2.0000000000e+00 d2

Parameters for function evaluation 9:
2.0000000000e+00 d1
2.0000000000e+00 d2

Parameters for function evaluation 10:
0.0000000000e+00 d1
3.0000000000e+00 d2

Parameters for function evaluation 11:
1.0000000000e+00 d1
3.0000000000e+00 d2

Parameters for function evaluation 12:
2.0000000000e+00 d1
3.0000000000e+00 d2

Figure 3.5: Dakota output function evaluations for a grid parameter study, the tensor product of
three steps in d1 with four steps in d2.

variables are typically taken to be uniform on their support. Dakota will generate a space-filling
sample design (shotgun blast of points into the M -dimensional parameter space). It will then run
the model at these points, and analyze the resulting response data. Here we use a Latin hypercube
design for consistency with the UQ recommendations. Latin hypercube designs have better space
filling properties and 1-D projections. They will converge statistically at a faster rate than simple
Monte Carlo designs.

Dakota Input for Cantilever: A Dakota input file example for conducting a sampling-based
study on the cantilever beam is displayed in Listing 3.3. It generates a Latin hypercube design
with 100 sample points (lines 11–12) in the six-dimensional parameter space. Note lines 35–38,

CASL-U-2017-1445-000 33

Figure 3.6: Cantilever beam: Minitab-generated main effects for w and t from grid study.

where the variables are characterized using uniform probability distributions. While not strictly
necessary (bounded design variables can work too), this illustrates that Monte Carlo sampling
can work with arbitrary probability distributions when needed. The seed on line 29 is specified
for study repeatability. If the seed is omitted, Dakota will choose one at random, resulting in a
different random design. This can be used to generate replicates to assess variability the statistics.
Figure 3.7 shows sets of 2-D projections of one Dakota-generated sampling design.

2 2.1 2.2
t

2 2.1 2.2
w

800 1000 1200
Y

400 600
X

2 3 4

x 10
7E

3.5 4 4.5

x 10
4

2

2.1

2.2

R

t

2

2.1

2.2

w

800

1000

1200

Y

300

400

500

600

700

X

2

3

4

x 10
7

E

3.5

4

4.5

x 10
4

R

Figure 3.7: Latin hypercube design example: 2-D projections showing locations in the parameter
space of 100 Monte Carlo samples using uniform distributions for all six parameters.

CASL-U-2017-1445-000 34

Listing 3.3: Dakota input file showing global sampling on the cantilever beam problem.
1 environment

tabular_data
3 tabular_data_file ’cantilever_sa.dat ’

custom_annotated header eval_id
5

method ,
7

do a sampling -based sensitivity study , optionally with
9 # variance -based decomposition to get higher order sensitivities

sampling
11 sample_type lhs

samples = 100
13 # variance_based_decomp

15 # do a design -of -experiments -based sensitivity using ANOVA to compute
the sensitivities

17 # dace oas
main_effects

19 # samples = 100

21 # do a Morris One -At -A-Time sensitivity study
psuade_moat

23 # must be odd
partitions = 3

25 # must be integer multiple of (num_vars + 1)
samples = 98

27

need these for all methods; seed allows for repeatability
29 seed = 52983

31 variables ,

33 # By default DACE and Sampling methods sample over all variables

35 uniform_uncertain = 6
upper_bounds 48000. 45.E+6 700. 1200. 2.2 2.2

37 lower_bounds 32000. 15.E+6 300. 800. 2.0 2.0
descriptors ’R’ ’E’ ’X’ ’Y’ ’w’ ’t’

39

interface ,
41 direct

analysis_driver = ’mod_cantilever ’
43

responses ,
45 num_response_functions = 3

response_descriptors = ’weight ’ ’stress ’ ’displ ’
47 no_gradients

no_hessians

CASL-U-2017-1445-000 35

Results and Discussion: When performing Monte Carlo sampling, Dakota outputs corre-
lations, including the partial correlations shown in the screen output in Figure 3.8. As discussed
previously in Section 3.1.2, correlations often give a good quick indication of the overall input/output
correlation as shown here. Values near 1 indicate strong positive correlation, -1 negative correlation,
0 no correlation. For sensitivity analysis, we typically rely on partial correlations as they account
for the effect of other variables to provide a more reliable ranking mechanism.

Partial Correlation Matrix between input and output:
weight stress displ

R 1.36556e-01 -9.89955e-01 -5.82547e-02
E -2.59807e-02 1.51530e-02 -9.53598e-01
X -8.58158e-03 9.96167e-01 3.12725e-01
Y 5.15226e-02 9.96214e-01 7.35493e-01
w 9.99659e-01 -9.84197e-01 -4.20681e-01
t 9.99659e-01 -9.89246e-01 -5.24940e-01

Figure 3.8: Dakota output showing partial correlations for the cantilever beam problem.

One can visualize the correlation coefficients with external software to more easily see the relative
impact. For large numbers of parameters, it is helpful to plot the relative magnitudes (Figure 3.9)
or color code with conditional formatting in Excel (Figure 3.10) to more readily differentiate small
from large correlations. Typically, correlations greater than 0.5 in magnitude indicate potentially
significant input/output relationships (though specific guidance and interpretation depends on the
number of samples, number of variables, and analysis tolerance). Values less than 0.5 should be
more carefully studied for possible confounding factors or nonlinearities before discounting their
importance.

As correlation coefficients are a linear measure of input/output relationship, it is critical to
visualize scatter plots to check for nonlinear trends. Figure 3.11 shows scatter plots generated in
Matlab, together with linear regression fits to the data. Some of the scatter plots exhibit nonlinear
input/output trends in the cloud of data, for example the plots of E versus displ shows some curva-

−1 −0.5 0 0.5 1

R
E
X
Y
w
t

Partial correlation for displ

Figure 3.9: Cantilever beam: partial correlation between displacement and inputs.

CASL-U-2017-1445-000 36

Partial Correlations for Cantilever

weight stress displ

R 0.14 -0.99 -0.06

E -0.03 0.02 -0.95

X -0.01 1.00 0.31

Y 0.05 1.00 0.74

w 1.00 -0.98 -0.42

t 1.00 -0.99 -0.52

Figure 3.10: Cantilever beam: partial correlation between displacement and inputs, conditionally
formatted with Microsoft Excel.

ture. Overall, however, the correlations are a good representative indicator of the most important
factors for these sample data.

Monte Carlo / LHS sampling for sensitivity analysis screening is typically conducted with number
of samples equal to 10 times the number of variables, but budgets often push this down to a factor
of two. Also, global Gaussian process models built in Dakota are typically constructed based on
a Latin hypercube design. Guidance on the number of samples for constructing such surrogates is
provided in Chapter 4.

2.05 2.1 2.15
t

2.05 2.1 2.15
w

900 10001100
Y

400 500 600
X

2 3 4

x 10
7E

3.5 4 4.5

x 10
4

5

10

15

R

d
is

p
l

4

5

6

7

8

9
x 10

4

st
re

ss

4.2

4.4

4.6

w
ei

g
h

t

Figure 3.11: Cantilever beam: input/output scatter plots with correlations.

CASL-U-2017-1445-000 37

3.2.4 PSUADE/Morris Method

The Morris One-At-a-Time method, originally proposed by M. D. Morris [36], is a screening method,
designed to explore a computational model to distinguish between input variables that have negligi-
ble, linear and additive, or nonlinear/interaction effects on the output. The computer experiments
consist of individually randomized designs, which vary one input factor at a time to create a sample
of its elementary effects. A more extensive discussion of the method and its metrics can be found
in the “Design of Experiments Capabilities” chapter of the Dakota User’s Manual [1].

The file examples/SensitivityAnalysis/cantilever_morris.in shows an alternate Dakota
method specification for conducting a Morris screening experiment, resulting in the Morris modified
mean and standard deviation of elementary effects, defined above in Section 3.1.2. This method
often gives good insight for modest simulation budget. The changed input fragment is:

psuade_moat
must be odd
partitions = 3
must be integer multiple of (num_vars + 1)
samples = 98

In Figure 3.12, the Dakota screen output has been imported into Matlab to plot the modified
mean µ∗ versus standard deviation σ of the elementary effects. One can observe that for weight, w
and t have a strong main effect as expected, and a small nonzero interaction effect. Other variables
have no influence. For stress, R has a strong main/linear effect, X and Y have a stronger main
effect than w and t, yet w and t have a stronger interaction effect. These are also evident from
the cantilever equations. The displacement shows strong main and interaction dependence on E,
weaker influence of w, t,X, Y, and no influence of R. This is likely an artifact of the magnitude of
E, which is swamping the analysis, and emphasizes the importance of careful input scaling.

0 0.5 1
0

0.005

0.01

0.015

0.02

main effect (µ*)

in
te

ra
ct

io
n

 e
ff

ec
t

(σ
)

RE
XY

w
t

weight

0 1 2 3

x 10
4

0

1000

2000

3000

4000

main effect (µ*)

RE

X
Y

w t

stress

0 5 10 15
0

1

2

3

4

5

main effect (µ*)

R

E

X
Y

w

t

displ

Figure 3.12: Cantilever beam: Morris elementary effects: modified mean (µ∗) and standard devia-
tion (σ).

3.3 Summary and Additional Approaches

Parameter studies, design/analysis of computer experiments (DACE), and general sampling methods
share the purpose of exploring the parameter space for sensitivity analysis. When a global space-
filling set of samples is desired, then the design of experiments (DOE), DACE, and sampling methods

CASL-U-2017-1445-000 38

are recommended, with the particular choice depending on computational cost. These techniques
are useful for scatter plot and variance analysis as well as surrogate model construction.

We draw a distinction between DOE and DACE methods. DOE are intended for physical
experiments containing an element of stochasticity (and therefore tend to place samples at the
extreme parameter vertices), whereas the latter are intended for deterministic computer experiments
and are more space-filling in nature. Another distinction between DOE/DACE and sampling is
based on the distributions of the parameters. DOE/DACE methods typically assume uniform
distributions, whereas the sampling (and other uncertainty quantification) approaches in Dakota
support a broad range of probability distributions.

Sensitivity analysis method selection recommendations for a broader array of Dakota methods
are summarized in Table 3.2. Here are a few highlights to supplement the core recommendations
above:

• The vector and list parameter study methods not described here are summarized in the “Pa-
rameter Study Capabilities” chapter of the Dakota User’s Manual [1]. List parameter studies
run the model at user-specified design points.

• The file cantilever_sa.in also demonstrates the use of DACE orthogonal array (lines 17–
19) designs with minor changes to the input file. These output other helpful measures of
sensitivity described in the “DACE Capabilities" chapter of the Dakota User’s Manual [1].

• When implemented using replicate samples (specifying method, sampling, variance_based_
decomp in the Dakota input), variance-based decomposition can require a prohibitive number
of model runs. Surrogates such as Gaussian process models (see Section 4.2) are often used
to mitigate this cost. Another advanced approach is to use polynomial chaos expansions
(Section 6.1.2), which also produce Sobol indices. One may use a structured PCE design
generated by Dakota, or import the points from a previous Monte Carlo sample to build the
PCE and quickly calculate the variance-based decomposition.

• Other design types may be more appropriate for polynomial regression such as Box-Behnken [7]
or central composite design [8] for quadratic polynomials.

Table 3.2: Guidelines for selection of parameter study, DOE, DACE, and sampling methods.

Method Applications Applicable Methods
Classification

parameter study sensitivity analysis, centered_parameter_study,
directed parameter space list_parameter_study,

investigations multidim_parameter_study,
vector_parameter_study

classical design physical experiments dace (box_behnken,
of experiments (parameters uniformly distributed) central_composite)

design of variance analysis, dace (grid, random, oas, lhs, oa_lhs),
computer space filling designs fsu_quasi_mc (halton, hammersley),

experiments (parameters uniformly distributed) fsu_cvt, psuade_moat

sampling space filling designs sampling (Monte Carlo, LHS)
(parameters have with optional

general probability distributions) active view override

CASL-U-2017-1445-000 39

Chapter 4

Surrogate Models

This chapter introduces the basic theory and use of Dakota’s polynomial regression and kriging
surrogate models. Surrogate models are typically employed to provide computationally efficient
approximate representations of trends and residual (error) processes in physical data or code output.
The terms “emulator,” “response surface,” and “meta-model” refer to the generation of surrogate
predictions with associated uncertainty quantification. In the Dakota context, surrogate models are
automatically generated based on empirical samples of the true simulation model’s input/output
relationship. This type of surrogate can be contrasted with physics-based surrogates which make
simplifying assumptions to create a simpler, faster-running simulation model.

In the following, Y (x) denotes a surrogate for the physical or computational response of in-
terest f(x), µ̃(x) denotes the prediction of Y (x) evaluated at the input x (emulator mean), and
σ̃(x) denotes the standard error of prediction evaluated at the input x (emulator standard error).
Emulators are constructed from physical data or code output collected on a sample design of N
runs in M input dimensions. Good practice requires the run size N to be at least as large as the
number of surrogate model parameters requiring estimation (degrees of freedom). Dakota enforces
this practice by exiting and returning an error message if N is too small. The degrees of freedom
(and thus minimum N) will be stated for each surrogate model introduced in the ensuing sections.

The surrogate models considered in this chapter assume the distribution of residuals (difference
between experimental or code output and emulator prediction) is modeled as mean-zero Gaussian.
Diagnostics such as a normal probability plot of standardized emulator residuals can be used to check
this assumption, as illustrated in Section 7.3.2. Under the assumption of Gaussian residuals, outputs
used to construct emulators will then follow a multivariate Gaussian distribution, assuming all
unknown surrogate model parameters are fixed. The likelihood of observing the given outputs for any
given value of the surrogate model parameters is the associated value of this multivariate Gaussian
density function. In this chapter, most surrogate model parameters are estimated by maximum
likelihood in Dakota, by finding a value for these parameters that maximizes the likelihood function.
This value is referred to as the maximum likelihood estimate (MLE). Parameter estimation via MLE
differs from the Bayesian approach to parameter inference discussed in Uncertainty Quantification,
Chapter 6, in that the latter results in a probability distribution for the surrogate model parameters.
In practice, the contribution to overall emulator uncertainty induced by surrogate model parameter
uncertainty from Bayesian inference is often small compared with the uncertainty arising from the
residual error process itself. Computations in Dakota involving surrogate model indirection can
thus be sped up considerably by utilizing a point estimate (the MLE) in place of a probability
distribution for the surrogate model parameters.

Section 4.1 considers polynomial surrogates, which are typically used to model observed trends

CASL-U-2017-1445-000 40

in data from physical experiments resulting from perturbing input parameters that describe physical
scenarios of interest. Polynomial surrogates model these trends as a regression relationship that is
linear in the unknown coefficients (but not necessarily in the inputs themselves). Experimental errors
are assumed to be independently distributed as mean-zero Gaussian distributions having common
variance. Polynomial surrogates smooth the observed data by finding the best-fitting trend model
of those in the class specified by the user.

Section 4.2 considers kriging surrogates, which are typically used to model observed trends in
outputs from computationally intensive code runs resulting from input parameter perturbations.
In this setting, input parameters describe physical scenarios of interest as well as uncertain ini-
tial or boundary conditions, or possibly uncertain closure model parameters that are calibrated
to experimental data (see Optimization and Deterministic Calibration, Chapter 5 and Uncertainty
Quantification, Chapter 6). Assuming the quantities of interest vary smoothly with input pertur-
bations, the information available from a small number of code runs can be used effectively by the
kriging surrogate to infer a correlated error structure. The kriging surrogate is thus able to borrow
strength from the small set of code runs conducted to quickly predict code output at user speci-
fied input settings with quantified uncertainty. Code runs “closer" to a desired prediction site are
weighted more heavily in constructing the kriging emulator than those further away with respect
to the inferred correlation structure.

Typically, kriging surrogates interpolate the set of code runs made for the purpose of inferring the
surrogate model parameters. That is, emulator predictions at input sites corresponding to available
code runs are equal to the calculated code outputs with zero uncertainty. This interpolation property
is often desirable for emulating deterministic codes that produce a single output value over repeated
runs at the same input point. However, as described in Section 4.2 it is possible to relax this
interpolation property when fitting a kriging model. This option is useful for leveraging the flexibility
of kriging surrogates to model data from physical experiments (e.g. if polynomial surrogates do not
provide an adequate fit), or to model output from stochastic codes or deterministic codes subject
to numerical or high frequency noise.

As described in the ensuing sections, diagnostics are available to assess the predictive capability
of a chosen surrogate model. We synthesize the discussion above to make the following recommen-
dations on the initial choice of surrogate model. Polynomial surrogates are often employed to model
outputs from physical experiments. Polynomial or kriging surrogates may be utilized to model code
output. Polynomial surrogates are appropriate when very few input parameters are being varied
or prior knowledge indicates the trend contains minimal contribution from input nonlinearity and
interaction. Subject to these considerations regarding trend complexity, polynomial surrogates are
particularly appropriate for modeling stochastic or noisy code outputs. Kriging surrogates are ideal
for settings in which weak or nonexistent prior information exists about trend complexity. They are
often able to successfully infer the trend from a modest set of training runs, yielding an advantage
over the effort often required to successfully fit a suitable polynomial surrogate in the presence of
little or no prior information about trends. Kriging surrogates are also capable of fitting nonlin-
ear trends not easily represented by low order polynomial surrogates. For deterministic codes, the
uncertainty quantification provided by kriging surrogates conforms to the notion that prediction un-
certainty should diminish near input points at which training runs were conducted. This behavior
does not occur with polynomial surrogates.

CASL-U-2017-1445-000 41

4.1 Polynomial Regression Models

Linear, quadratic, and cubic polynomial surrogate models are available in Dakota. The form of the
linear polynomial model is

Y (x) = β0 +
M∑
i=1

βixi + ε(x) ;

the form of the quadratic polynomial model is

Y (x) = β0 +

M∑
i=1

βixi +

M∑
i=1

M∑
j≥i

βijxixj + ε(x) ;

and the form of the cubic polynomial model is

Y (x) = β0 +
M∑
i=1

βixi +
M∑
i=1

M∑
j≥i

βijxixj +
M∑
i=1

M∑
j≥i

M∑
k≥j

βijkxixjxk + ε(x) .

In all of the polynomial models, Y (x) is the response of the polynomial model plus a mean-zero
Gaussian error model (ε(x)); the xi, xj , xk terms are the components of the M -dimensional input
parameter values; and the β0, βi, βij , and βijk terms are the polynomial coefficients. The number
of coefficients, Nβ , depends on the order of the polynomial model. For the linear polynomial,
Nβ = M + 1; for the quadratic polynomial, Nβ = (M + 1)(M + 2)/2; and for the cubic polynomial,
Nβ = (M3 + 6M2 + 11M + 6)/6. The errors ε(·) associated with each output are assumed to be
independently distributed and have constant variance σ2.

There must be at least Nβ data samples (i.e. N ≥ Nβ) in order to form a fully determined
linear system and solve for the polynomial coefficients β. In most applications, the linear system
will be over-determined (i.e. N > Nβ). To solve such systems, Dakota employs a least-squares
approach involving a QR factorization-based numerical method. Note that N ≥ Nβ + 1 is required
to estimate both β and the error variance σ2.

The maximum likelihood value of β is computed via ordinary least squares,

β̂ =
(
GTG

)−1
GT y .

Here y is the N -vector of observed experimental data and G is an N by Nβ matrix that contains
evaluations of the polynomial basis functions at all runs in the N by M sample design X, Gij =
gj
(
XT
i

)
, i = 1, . . . , N ; j = 1, . . . , Nβ .

The emulator mean µ̃(x) evaluated at input x is a best linear unbiased predictor of the surrogate
Y (x),

µ̃(x) = gT (x)β̂ .

The emulator variance σ̃2(x) (here, the mean squared error of prediction) evaluated at input x
provides a spatially (over the input parameter space) varying measure of prediction uncertainty,

σ̃2(x) = σ̂2
(

1 + gT (x)
(
GTG

)−1
g(x)

)
,

where an unbiased estimate of σ2 is

σ̂2 =

(
y −Gβ̂

)T (
y −Gβ̂

)
N −Nβ

.

CASL-U-2017-1445-000 42

The utility of polynomial models stems from two sources: (1) over a small portion of the pa-
rameter space, a low-order polynomial model is often an accurate approximation to the true data
trends, and (2) the least-squares procedure provides a surface fit that smooths out noise in the
data. For this reason, surrogate-based optimization is often successful when using polynomial mod-
els, particularly quadratic models. However, a polynomial surface fit may not be the best choice
for modeling data trends over the entire parameter space, unless it is known a priori that the true
data trends are close to linear, quadratic, or cubic. Furthermore, in general, polynomial models
will not interpolate, i.e. predict with zero uncertainty, the data they are built from. If interpolation
is desired (as with deterministic computational models subject to negligible numerical noise), or if
lack of fit is observed, users should consider the kriging emulators described in the following section.
See [38] for additional information on polynomial models.

4.1.1 Fitting Polynomial Surrogates in Dakota

In the following discussion, typewriter font indicates the names of Dakota input or output files,
keywords, commands, or results. All input, output, and log files mentioned in this subsection can
be found in examples/SurrogateModels. Listings 4.1 and 4.2 together show the Dakota input file
cantilever_polynomial_eval.in for evaluating a quadratic polynomial emulator of the cantilever
beam model outputs at user-specified values of the inputs x. The values of x at which to eval-
uate the emulator are given in the list_parameter_study block of the input file (line 21). The
keyword sampling (line 57), together with sample_type lhs (line 59) tells Dakota to generate a
Latin hypercube sample. Dakota then runs the cantilever beam model on the resulting 60 input
settings (line 60), producing output for the three indicated response variables (area, stress, and dis-
placement). The design and output results are then used by Dakota to fit a quadratic polynomial
model to each response (line 36). Dakota also allows linear and cubic polynomial trend options.
Finally, predicted responses corresponding to each user specified input setting are written to the file
cantilever_polynomial_evals.dat (line 8), reproduced here in edited form:

%eval_id R E X Y w t area stress displacement
1 32887.97269 36889581.78 408.9821034 1148.6638 2.099541047 2.004037063 4.207558073 76546.06547 5.914253488
2 43482.92921 16550393.66 639.6736606 1051.841799 2.014840025 2.19097364 4.414461384 64938.20937 11.96142127
3 36220.72048 44845837.48 561.1743862 935.4138043 2.109386061 2.136922015 4.507593512 57481.41311 2.627795226
4 47325.31136 25228026.72 348.841119 876.590786 2.190414084 2.082472944 4.561478066 28938.90198 5.259963951

By specifying a random number seed (line 58), the results obtained from running Dakota are re-
peatable, which is useful for regression testing purposes and for situations in which intermediate
results (such as experimental designs) must be regenerated exactly in follow-on Dakota analyses.

In this example, we chose to generate a Latin hypercube sample to fit the quadratic surrogate
model. Latin hypercube samples are frequently used to fit kriging surrogates (Section 4.2) for com-
plex computational model quantities of interest due to their space-filling nature; however, they can
be less efficient than various alternatives more commonly selected for fitting polynomial surrogates,
particularly when modeling responses from physical experiments subject to observation error. Two
such alternatives for obtaining quadratic emulators are available in Dakota, selected by replac-
ing the sampling block with dace central_composite for central composite designs [8] or dace
box_behnken for Box-Behnken designs [7]. Central composite designs generate N = 1 + 2M + 2M

samples, while Box-Behnken designs generate N = 1 + 4M(M − 1)/2 samples. A seed can also be
specified with dace options for repeatability. The option dace oas allows for generation of orthog-
onal array designs [21] to support polynomial surrogate fits and main effects analysis (Chapter 3).

Dakota was run with the command dakota -i cantilever_polynomial_eval.in >& reg.log
&. The log file reg.log provides leave-one-out cross-validation root mean squared prediction errors

CASL-U-2017-1445-000 43

Listing 4.1: Dakota input file producing predictions at user-specified inputs from a quadratic poly-
nomial emulator for the cantilever beam problem.
Build and evaluate a quadratic polynomial emulator of cantilever beam

2 # at a user specified set of points

4 # Top -level controls
environment

6 method_pointer = ’EvalSurrogate ’
tabular_graphics_data

8 tabular_graphics_file = ’cantilever_polynomial_evals.dat ’

10 # Method to perform evaluations of the emulator
method

12 id_method = ’EvalSurrogate ’
model_pointer = ’SurrogateModel ’

14

Verbose will show the type form of the surrogate model
16 output verbose

18 # -----
Emulator evaluation option #1: Provide user specified inputs in the

20 # Dakota input file
list_parameter_study

22 list_of_points
R E X Y w t

24 32887.97269 36889581.78 408.9821034 1148.6638 2.099541047 2.004037063
43482.92921 16550393.66 639.6736606 1051.841799 2.014840025 2.19097364

26 36220.72048 44845837.48 561.1743862 935.4138043 2.109386061 2.136922015
47325.31136 25228026.72 348.841119 876.590786 2.190414084 2.082472944

28 # -----

30 # Surrogate model specification
model

32 id_model = ’SurrogateModel ’
surrogate global

34 dace_method_pointer = ’DesignMethod ’
Quadratic polynomial model

36 polynomial quadratic
compute and print diagnostics after build

38 metrics ’rsquared ’ ’root_mean_squared ’
press

CASL-U-2017-1445-000 44

Listing 4.2: (Continued) Dakota input file producing predictions at user-specified inputs from a
quadratic polynomial emulator for the cantilever beam problem.
variables ,

42 uniform_uncertain = 6
upper_bounds 48000. 45.E+6 700. 1200. 2.2 2.2

44 lower_bounds 32000. 15.E+6 300. 800. 2.0 2.0
descriptors ’R’ ’E’ ’X’ ’Y’ ’w’ ’t’

46

responses
48 response_functions = 3

descriptors = ’area ’ ’stress ’ ’displacement ’
50 no_gradients

no_hessians
52

Method to generate a 60 run Latin hypercube design to build the emulator
54 method

id_method = ’DesignMethod ’
56 model_pointer = ’SimulationModel ’

sampling
58 seed = 20

sample_type lhs
60 samples = 60

62 # The true simulation model to evaluate to build the emulator
model

64 id_model = ’SimulationModel ’
single

66 interface_pointer = ’SimulationInterface ’

68 interface ,
id_interface = ’SimulationInterface ’

70 direct
analysis_driver = ’mod_cantilever ’

CASL-U-2017-1445-000 45

(input file, line 39) for each output, which evaluated to 8.3476172226e-16, 5.2744083954e+01,
and 3.7407615270e-01 for area, stress, and displacement respectively. The root mean squared
prediction error (RMSPE) provides a good overall estimate of emulator out-of-sample predictive
capability.

A K-fold cross-validation procedure is also available in Dakota by replacing the press option
(line 39) with cross_validation folds = K. The K-fold cross-validation procedure involves ran-
domly partitioning the training data into K subsets, each containing approximately 100/K% of the
data. For each subset, the 100/K% of the design runs and their corresponding outputs are “held
out”, and the surrogate refitted with the remaining 100 ∗ (K − 1)/K% of the design runs and asso-
ciated outputs. The 100/K% hold-out points are then predicted by the refitted emulator. Thus a
total of K surrogate rebuilds are conducted, each leaving out 100/K% of the original training data,
and the RMSPE is computed for all of the hold-out design points over the whole procedure. Run-
ning Dakota with K = 10, the RMSPE evaluated to 6.1748098826e-16, 5.3512924399e+01, and
3.8966016172e-01 for area, stress, and displacement respectively. These results are qualitatively
similar to the leave-one-out cross-validation results. Note that the leave-one-out cross-validation
procedure is equivalent to N -fold cross-validation.

4.2 Kriging and Gaussian Process Models

The set of techniques known as kriging were originally developed in the geostatistics and spatial
statistics communities to produce maps of underground geologic deposits based on a set of widely
and irregularly spaced borehole sites [10]. Building a kriging model typically involves the

1. Choice of a trend function,

2. Choice of a correlation function, and

3. Estimation of correlation parameters.

Suppose outputs (e.g. deposits from the borehole sites) are to be collected at the N inputs
{x1, . . . , xN} to train a kriging surrogate Y (x) for the output at input x. The emulator used for
prediction of Y (x) is assumed to be linear in these outputs, Ŷ (x) =

∑N
i=1 ci(x)Y (xi). The coefficient

vector c(x) is determined by minimizing the mean squared error of prediction E
[(
Y (x)− Ŷ (x)

)2
]

for fixed correlation parameters, subject to the unbiasedness constraint E
[
Ŷ (x)

]
= E [Y (x)]. The

notation E[·] indicates expected value. The optimized mean squared error of prediction quantifies
the uncertainty in prediction of Y (x).

Kriging surrogates can also be derived from Gaussian processes, which further assume that
arbitrary collections of observed outputs follow multivariate Gaussian distributions for fixed trend,
variance and correlation parameters. In Dakota, the Gaussian process (GP) framework is adopted
to facilitate covariance parameter estimation through techniques such as maximum likelihood and
uncertainty quantification via standard statistical inference methods.

A kriging surrogate, Y (x), consists of a trend function (frequently a linear model gT (x)β) plus
a Gaussian process error model (ε(x)) that modifies the trend function locally,

Y (x) = gT (x)β + ε(x) .

This specifies a stochastic process representation of the unknown true surface f(x). The error process
ε(x) is assumed initially to have mean zero and constant variance σ2. Furthermore, correlated errors

CASL-U-2017-1445-000 46

in the input space are allowed by specifying a covariance function. In particular, the covariance
between the errors at two arbitrary input locations x and x′ is modeled as

Cov
(
Y (x), Y (x′)

)
= Cov

(
ε(x), ε(x′)

)
= σ2 r

(
x, x′

)
,

where r (x, x′) is a correlation function (i.e. a symmetric, positive definite function satisfying
r (x, x) = 1). In the following, this correlation function is assumed to depend on the values of
unknown parameters φ, designated r (x, x′|φ).

When the true surface results from evaluation of a deterministic computational model, the error
process ε(x) can be specified in such a way that the emulator will interpolate, with zero uncertainty,
the model runs it was built from. This is accomplished through selection of a correlation function
with requisite smoothness properties, discussed further below. The error process specification is
modified as follows to accommodate physical experiments subject to measurement or replicate vari-
ability, stochastic computational models, or deterministic computational models for which numerical
or high frequency noise is of concern,

Cov
(
ε(x), ε(x′)

)
= σ2 r

(
x, x′|φ

)
+ ∆2δ

(
x− x′

)
,

where

δ
(
x− x′

)
=

{
1 if x− x′ = 0
0 otherwise

and ∆2 is the variance of the observational or numerical error. In the ensuing discussion, the term
“nugget” refers to the ratio η = ∆2/σ2.

Figure 4.1 illustrates the behavior of emulators that interpolate versus emulators that smooth
output data. In each panel, the red filled circles represent observed outputs and the red curve
designates the emulator mean. The gray shaded area outlines the ensemble of pointwise 95%
prediction intervals as a function of the input x, computed using the emulator standard error. That
is, for any specified x, there is 95% probability that a future sampled output would lie between the
lower and upper bounds of the gray shaded area. The left panel illustrates an error process selected
for interpolation. Note the emulator mean passes directly through the three observed outputs, and
there is no emulator uncertainty at these points (zero width to the prediction intervals). Prediction
uncertainty grows as the input level x moves away from any input location at which output is
observed. The right panel illustrates an error process selected for smoothing. In this case, the
emulator mean defines a smooth surface that predicts the four observed outputs without being
required to recover their values exactly with zero uncertainty. The prediction intervals do not
narrow as x approaches an input location at which output is observed. Kriging models with no
nugget effect (η = 0) will interpolate, while polynomial models or kriging models with a positive
nugget effect (η > 0) will smooth.

By convention, the terms simple kriging, ordinary kriging, and universal kriging are used to
indicate the three most common choices for the trend function. In simple kriging, the trend is treated
as a known constant, usually zero, gT (x)β ≡ 0. Universal kriging [35] uses a general polynomial
trend model gT (x)β with coefficients determined by generalized least squares regression. Dakota
allows specification of linear or quadratic trend models. For quadratic models, the user can choose
to include or omit the interaction terms among the input variables. Ordinary kriging is essentially
universal kriging with a trend order of zero, i.e. the trend function is treated as an unknown constant
and g(x) = 1. As before, Nβ denotes the number of basis functions in g(x) and therefore the number
of elements in the vector β. Ordinary kriging is typically selected when emulating code output, as
GP models often have sufficient flexibility to detect complex trends without the need for estimating
the additional parameters required by a more complex trend function. However, if prior knowledge

CASL-U-2017-1445-000 47

x

y ●
●

●

x

y

●
●

●

●

Figure 4.1: Emulator that interpolates (left) and smooths (right) observed output.

about more complex trends is available, it should be incorporated into trend function specification,
particularly if the emulator is to be used for extrapolation.

The maximum likelihood value of β for fixed correlation parameters is computed via generalized
least squares utilizing the correlation matrix R(φ) of the error process,

β̂(φ) =
(
GTR−1(φ)G

)−1
GTR−1(φ) y .

Here G is a N by Nβ matrix that contains evaluations of the polynomial basis functions at all
runs in the N by M sample design X, Gij = gj

(
XT
i

)
, i = 1, . . . , N ; j = 1, . . . , Nβ . The real,

symmetric, positive-definite correlation matrix R(φ) from the error model contains evaluations of
the correlation function r(·, ·|φ) at all pairwise combinations of runs in the sample design X,

Rij(φ) = Rji(φ) = r
(
XT
i , X

T
j |φ
)

= r
(
XT
j , X

T
i |φ
)

There is a single family of correlation functions implemented in Dakota, the power exponential:

r (xi, xj |φ) = exp

(
−

M∑
k=1

φk |xik − xjk|γ
)

where 0 < γ ≤ 2 and φk > 0. The sample paths of a process equipped with this correlation function
are everywhere continuous and nowhere differentiable for 0 < γ < 2, and analytic for γ = 2. Dakota
allows only this latter specification, referred to as the squared exponential or Gaussian correlation
function. Note that N ≥ Nβ + M + 1 is required to estimate β, the error variance σ2, and the
correlation function parameters φ. Estimation of the nugget η in addition to all other surrogate
parameters requires N ≥ Nβ +M + 2.

The emulator mean µ̃(x|φ) evaluated at input x is a best linear unbiased predictor of the surro-
gate Y (x),

µ̃(x|φ) = gT (x)β̂(φ) + r̄T (x|φ)R−1(φ)
(
y −Gβ̂(φ)

)
,

CASL-U-2017-1445-000 48

where r̄i(x|φ) = r
(
x,XT

i |φ
)
. This emulator will interpolate the data that the kriging model was

built from as long as no nugget is specified or fit and its correlation matrix R(φ) is numerically
non-singular.

The emulator variance σ̃2(x|φ) (here, the mean squared error of prediction) evaluated at input
x provides a spatially varying measure of prediction uncertainty,

σ̃2(x|φ) = σ̂2(φ)
(
1− r̄T (x|φ)R−1(φ) r̄(x|φ)

+
(
g(x)−GTR−1(φ) r̄(x|φ)

)T (
GTR−1(φ)G

)−1 (
g(x)−GTR−1(φ) r̄(x|φ)

))
,

where an unbiased estimate of σ2 for fixed correlation parameters is

σ̂2(φ) =

(
y −Gβ̂(φ)

)T
R−1(φ)

(
y −Gβ̂(φ)

)
N −Nβ

.

Dakota completes construction of the kriging model by using optimization to find a set of
correlation parameters φ (and if applicable, nugget η) that maximize the likelihood of observing the
available data. This is equivalent to minimizing the following objective function,

obj(φ) = log
(
σ̂2(φ)

)
+

log (det (R(φ))) + log
(
det
(
GTR−1(φ)G

))
N −Nβ

.

Polynomial surrogates are a special case of kriging surrogates, resulting from setting r (x, x′) = 1
if x = x′ and 0 otherwise, and ∆ = 0.

4.2.1 Fitting Kriging Surrogates in Dakota

In the following discussion, typewriter font indicates the names of Dakota input or output files,
keywords, commands, or results. All input, output, and log files mentioned in this subsection can
be found in examples/SurrogateModels. Listings 4.3 and 4.4 together show the Dakota input
file cantilever_gp_eval.in for evaluating a GP emulator of the cantilever beam model output
at user specified input settings. This surrogate model assumes unknown constant trend (line 34),
representing the default ordinary kriging specification. Universal kriging options are also available,
by specifying a linear, reduced_quadratic, or quadratic trend. The reduced quadratic option
fits a quadratic trend in the absence of interaction terms. This job shows how these input settings
can be read from the user specified input file cantilever_user_points.dat (line 23), which has
the following format:

%eval_id interface R E X Y w t
1 NO_ID 32887.97269 36889581.78 408.9821034 1148.6638 2.099541047 2.004037063
2 NO_ID 43482.92921 16550393.66 639.6736606 1051.841799 2.014840025 2.19097364
3 NO_ID 36220.72048 44845837.48 561.1743862 935.4138043 2.109386061 2.136922015
4 NO_ID 47325.31136 25228026.72 348.841119 876.590786 2.190414084 2.082472944

The keyword sampling (line 55) together with sample_type lhs (line 57) tells Dakota to generate
a Latin hypercube sample. Dakota then runs the cantilever beam model on the resulting 60 input
settings (line 58), producing output for the three indicated response variables (area, stress, and
displacement). The design and output results are then used by Dakota to fit a GP with estimated
constant trend to each response, and finally predicted responses corresponding to each user specified
input setting are written to the file cantilever_gp_evals.dat (line 8), reproduced here in edited
form:

CASL-U-2017-1445-000 49

%eval_id R E X Y w t area stress displacement
1 32887.97269 36889581.78 408.9821034 1148.6638 2.099541047 2.004037063 4.209402759 76378.17522 5.360993694
2 43482.92921 16550393.66 639.6736606 1051.841799 2.014840025 2.19097364 4.413155956 65000.4832 12.41942451
3 36220.72048 44845837.48 561.1743862 935.4138043 2.109386061 2.136922015 4.506773804 57529.4144 2.511857535
4 47325.31136 25228026.72 348.841119 876.590786 2.190414084 2.082472944 4.560423301 29135.16863 5.260298986

By specifying a random number seed (line 56), the results obtained from running Dakota are re-
peatable.

Listing 4.3: Dakota input file producing predictions at user specified inputs from a GP emulator
with estimated constant trend for the cantilever beam problem.

1 # Build and evaluate a Gaussian process emulator of cantilever beam
at a user specified set of points

3

Top -level controls
5 environment

method_pointer = ’EvalSurrogate ’
7 tabular_graphics_data

tabular_graphics_file = ’cantilever_gp_evals.dat ’
9

11 # Method to perform evaluations of the emulator
method

13 id_method = ’EvalSurrogate ’
model_pointer = ’SurrogateModel ’

15

Verbose will show the type form of the surrogate model
17 output verbose

19 # -----
Emulator evaluation option #2: Provide user specified inputs in a

21 # separate file
list_parameter_study

23 import_points_file ’cantilever_user_points.dat ’

25

Surrogate model specification
27 model

id_model = ’SurrogateModel ’
29 surrogate global

dace_method_pointer = ’DesignMethod ’
31 # GP model

gaussian_process surfpack
33 trend

constant
35 # compute and print diagnostics after build

metrics ’rsquared ’ ’root_mean_squared ’
37 press

A minimum run size was previously indicated based on the desire to obtain at least as many
runs as unknown surrogate parameters. However, more conservative run sizes are often selected,
such as a factor of 10 times the number of “active inputs." Since this latter quantity is often not
known, N = 10M is often selected [33]. With M = 6, this is the basis for the run size of 60 chosen
for this example.

Dakota was run with the command dakota -i cantilever_gp_eval.in >& gp.log &. The

CASL-U-2017-1445-000 50

Listing 4.4: (Continued) Dakota input file producing predictions at user specified inputs from a GP
emulator with estimated constant trend for the cantilever beam problem.
variables ,

40 uniform_uncertain = 6
upper_bounds 48000. 45.E+6 700. 1200. 2.2 2.2

42 lower_bounds 32000. 15.E+6 300. 800. 2.0 2.0
descriptors ’R’ ’E’ ’X’ ’Y’ ’w’ ’t’

44

responses
46 response_functions = 3

descriptors = ’area ’ ’stress ’ ’displacement ’
48 no_gradients

no_hessians
50

Method to generate a 60 run Latin hypercube design to build the emulator
52 method

id_method = ’DesignMethod ’
54 model_pointer = ’SimulationModel ’

sampling
56 seed = 20

sample_type lhs
58 samples = 60

60 # The true simulation model to evaluate to build the emulator
model

62 id_model = ’SimulationModel ’
single

64 interface_pointer = ’SimulationInterface ’

66 interface ,
id_interface = ’SimulationInterface ’

68 direct
analysis_driver = ’mod_cantilever ’

CASL-U-2017-1445-000 51

log file gp.log provides the surrogate parameter estimates φ̂, β̂(φ̂) and σ̂2(φ̂), as well as the
leave-one-out cross-validation RMSPEs (input file, line 37) for each output, which evaluated to
1.1264992653e-03, 1.4913388456e+02, and 1.1507679873e-01 for area, stress, and displacement
respectively. ForK = 10, the cross-validation RMSPEs for each output evaluated to 1.2088124274e-03,
1.4905338700e+02, and 1.4178321830e-01 for area, stress, and displacement respectively. Kriging
fits can be adversely affected if the proportion of runs held out for cross-validation is too large
(problem dependent), so it is typical to use K = N (i.e. leave-one-out) in this setting.

Table 4.1 collects the four predictions of each output made by the quadratic polynomial and
kriging emulators for comparison with direct code calculations. These predictions track variation
in the code calculations well, an observation consistent with the small size of the cross-validation
RMSPEs relative to the observed range in the calculations for each output.

Table 4.1: Polynomial and kriging emulator predictions compared with code calculations.
Area

Case Calculation Polynomial Kriging
1 4.207558073 4.207558073 4.209402759
2 4.414461384 4.414461384 4.413155956
3 4.507593512 4.507593512 4.506773804
4 4.561478066 4.561478066 4.560423301

Stress
Case Calculation Polynomial Kriging
1 76625.08025 76546.06547 76378.17522
2 64919.07096 64938.20937 65000.4832
3 57457.96055 57481.41311 57529.4144
4 28991.46319 28938.90198 29135.16863

Displacement
Case Calculation Polynomial Kriging
1 5.495297702 5.914253488 5.360993694
2 12.52267129 11.96142127 12.41942451
3 2.506561572 2.627795226 2.511857535
4 5.213217663 5.259963951 5.260298986

4.3 Summary

Table 4.2 summarizes the essential Dakota options for specifying polynomial regression or kriging
models, with guidance on which method is to be preferred based on the nature of the physical/-
computational experiment output and assumptions about the statistical modeling of residual error.
Additional details on fitting kriging and other surrogates such as multivariate adaptive regression
splines (MARS), simple artificial neural networks, or basic radial basis functions can be found in
the Surfpack User’s Manual [11].

CASL-U-2017-1445-000 52

Table 4.2: Guidelines for selection of surrogate methods.
Method Applications Applicable Methods

Classification
polynomial smooth fit to physical experiment polynomial
regression response or stochastic/noisy linear | quadratic |

computational experiment response cubic
[i.i.d. residual errors]

kriging interpolation of deterministic smooth gaussian_process surfpack
computational experiment response trend

(specify trend option only) constant | linear |
or smooth fit to stochastic/noisy reduced_quadratic |

computational experiment response quadratic
(specify trend and nugget options) nugget (η > 0) |

[correlated residual errors] find_nugget

CASL-U-2017-1445-000 53

Chapter 5

Optimization and Deterministic
Calibration

The objective of optimization algorithms is to minimize (or maximize) an objective function, typi-
cally calculated by the user simulation code, subject to constraints on design variables and responses.
Examples of optimization goals include:

• Identify system designs with maximal performance; e.g., case geometry that minimizes drag
and weight, yet is sufficiently strong and safe.

• Determine operational settings that maximize system performance, e.g., fuel re-loading pattern
yielding the smoothest nuclear reactor power distribution while maximizing output.

• Identify minimum-cost system designs/operational settings, e.g., delivery network that mini-
mizes cost while also minimizing environmental impact.

• Identify best/worst case scenarios, e.g., impact conditions that incur the most damage.

• Calibration: Determine parameter values that maximize agreement between simulation re-
sponse and target response.

The last goal is a critical use case for CASL. The calibration (parameter estimation, inverse prob-
lem) process involves adjusting input parameters to optimally fit a model to experimental or high-
fidelity computational model data, find operational settings that best match a prescribed perfor-
mance profile, or determine source terms for an observed phenomenon. Any Dakota optimization
method can be applied to calibration problems, though some are tailored to efficiently address local
least squares problem formulations. This chapter emphasizes deterministic model calibration, while
non-deterministic approaches such as Bayesian methods are treated in Uncertainty Quantification,
Chapter 6.

Available optimization approaches in Dakota include well-tested, proven gradient-based, derivative-
free local, and global methods for use in science and engineering design applications. Dakota also
offers more advanced algorithms, e.g., to manage multi-objective optimization or perform surrogate-
based minimization (useful for noisy or expensive problems). A more extensive treatment of these
can be found in “Optimization Capabilities,” “Nonlinear Least Squares Capabilities,” and “Surrogate-
Based Minimization” chapters of the Dakota User’s Manual [1]. This chapter continues by intro-
ducing optimization terminology needed to select from the available approaches.

CASL-U-2017-1445-000 54

5.1 Terminology and Problem Formulations

This section provides a basic introduction to the mathematical formulation of optimization problems.
The primary goal of this section is to introduce terms relating to these topics, and is not intended
to be a description of theory or numerical algorithms. For further details, consult [4], [16], [19], [39],
and [54].

A general optimization problem is formulated as follows:

minimize: f(x) objective function
over: x ∈ <M design variables

subject to: gL ≤ g(x) ≤ gU nonlinear inequality constraints
h(x) = ht nonlinear equality constraints (5.1)

aL ≤ Aix ≤ aU linear inequality constraints
Aex = at linear equality constraints

xL ≤ x ≤ xU bound constraints

In this formulation, x = [x1, x2, . . . , xM] is an M -dimensional vector of real-valued design variables
or design parameters. The M -dimensional vectors xL and xU , are the lower and upper bounds,
respectively, on the design parameters. These bounds define the allowable values for the elements
of x, and the set of all allowable values is termed the design space or the parameter space. A design
point or a sample point is a particular set of values within the parameter space.

The optimization goal is to minimize the objective function, f(x), while satisfying the constraints.
Constraints can be categorized as either linear or nonlinear and as either inequality or equality. The
nonlinear inequality constraints, g(x), are “2-sided,” in that they have both lower and upper bounds,
gL and gU , respectively. The nonlinear equality constraints, h(x), have target values specified by
ht. The linear inequality constraints create a linear system Aix, where Ai is the coefficient matrix
for the linear system. These constraints are also 2-sided as they have lower and upper bounds, aL
and aU , respectively. The linear equality constraints create a linear system Aex, where Ae is the
coefficient matrix for the linear system and at are the target values. The constraints partition the
parameter space into feasible and infeasible regions. A design point is said to be feasible if and
only if it satisfies all of the constraints. Correspondingly, a design point is said to be infeasible if it
violates one or more of the constraints.

Many different methods exist to solve the optimization problem given by (5.1), all of which
iterate on x in some manner. That is, an initial value for each parameter in x is chosen, the response
quantities, f(x), g(x), h(x), are computed, often by running a simulation, and some algorithm is
applied to generate a new x that will either reduce the objective function, reduce the amount of
infeasibility, or both. To facilitate a general presentation of these methods, three criteria will be
used in the following discussion to differentiate them: optimization problem type, search goal, and
search method.

The optimization problem type can be characterized both by the types of constraints present
in the problem and by the linearity or nonlinearity of the objective and constraint functions. For
constraint categorization, a hierarchy of complexity exists for optimization algorithms, ranging from
simple bound constraints, through linear constraints, to full nonlinear constraints. By the nature
of this increasing complexity, optimization problem categorizations are inclusive of all constraint
types up to a particular level of complexity. That is, an unconstrained problem has no constraints,
a bound-constrained problem has only lower and upper bounds on the design parameters, a linearly-
constrained problem has linear constraints (and optionally bound constraints), and a nonlinearly-
constrained problem may contain the full range of nonlinear, linear, and bound constraints (though

CASL-U-2017-1445-000 55

may omit linear or bound constraints if not applicable). If all of the linear and nonlinear constraints
are equality constraints, then this is referred to as an equality-constrained problem, and if all of the
linear and nonlinear constraints are inequality constraints, then this is referred to as an inequality-
constrained problem.

Further categorizations can be made based on the linearity of the objective and constraint
functions. A problem where the objective function and all constraints are linear is called a linear
programming (LP) problem. These types of problems commonly arise in scheduling, logistics, and
resource allocation applications. Likewise, a problem where at least some of the objective and
constraint functions are nonlinear is called a nonlinear programming (NLP) problem. These NLP
problems predominate in engineering applications and are the primary focus of Dakota.

The search goal refers to the ultimate objective of the optimization algorithm, i.e., either
global or local optimization. In global optimization, the goal is to find the design point that gives
the lowest feasible objective function value over the entire parameter space. In contrast, in local
optimization, the goal is to find a design point that is lowest relative to a “nearby” region of the
parameter space. In almost all cases, global optimization will be more computationally expensive
than local optimization. Thus, the user must choose an optimization algorithm with an appropriate
search scope that best fits the problem goals and the computational budget.

The search method refers to the approach taken in the optimization algorithm to locate a
new design point that has a lower objective function or is more feasible than the current design
point. The search method can be classified as either gradient-based or nongradient-based. In a
gradient-based algorithm, gradients of the response functions are computed to find the direction of
improvement. The Hessian (matrix of second derivatives of objectives and constraints with respect
to parameters) can also be used in these methods to identify curvature to distinguish local minima
from maxima. Gradient-based optimization is the search method that underlies many efficient local
optimization methods. However, a drawback to this approach is that gradients can be computation-
ally expensive, inaccurate, or even nonexistent (the situation for Hessians is typically even worse). In
such situations, nongradient-based search methods may be useful. There are numerous approaches
to nongradient-based optimization. Some of the more well known of these include pattern search
methods (nongradient-based local techniques) and genetic algorithms (nongradient-based global
techniques).

5.1.1 Special Considerations for Calibration

Any Dakota optimization algorithm can be applied to calibration problems arising in parameter
estimation, system identification, and test/analysis reconciliation. However, nonlinear least-squares
methods are optimization algorithms that exploit the special structure of a least squares or sum-of-
squares objective function [16]. Here the misfit between vectors of model responses and simulation
data is measured in the Euclidean or two-norm.

To exploit the problem structure, more granularity is needed in the response data than is required
for a typical optimization problem. That is, rather than using the sum-of-squares objective function
and its gradient, least-squares iterators require each term used in the sum-of-squares formulation
along with its gradient. This means that the functions in the Dakota response data set consist of
the N individual least-squares terms along with any nonlinear inequality and equality constraints.
These individual terms are often called residuals when they denote differences of observed quantities
from values computed by the model whose parameters are being estimated.

The enhanced granularity needed for nonlinear least-squares algorithms allows for simplified
computation of an approximate Hessian matrix. In Gauss-Newton-based methods for example,
the true Hessian matrix is approximated by neglecting terms in which residuals multiply Hessians

CASL-U-2017-1445-000 56

(matrices of second partial derivatives) of residuals, under the assumption that the residuals are
zero in expected value under the nonlinear least-squares model. As a result, residual function value
and gradient information (first-order information) is sufficient to define the value, gradient, and
approximate Hessian of the sum-of-squares objective function (second-order information).

In practice, least-squares solvers will tend to be significantly more efficient than general-purpose
optimization algorithms when the Hessian approximation is a good one, i.e., when the neglected
component has negligible effect at the solution. Specifically, they can exhibit the quadratic con-
vergence rates of full Newton methods, even though only first-order information is used. Gauss-
Newton-based least-squares solvers may experience difficulty when the residuals at the solution are
significant. Dakota has three solvers customized to take advantage of the sum of squared resid-
uals structure in this problem formulation. Least squares solvers may experience difficulty when
the residuals at the solution are significant, although experience has shown that Dakota’s NL2SOL
method can handle some problems that are highly nonlinear and have nonzero residuals at the
solution.

Specialized least squares solution algorithms can exploit the structure of a sum-of-squares ob-
jective function for problems of the form:

minimize: f(θ) =
∑N

i=1[Ti(θ)]
2 =

∑N
i=1[yi(θ)− di]2 least squares objective function

over: θ ∈ <M calibration variables
subject to: gL ≤ g(x) ≤ gU nonlinear inequality constraints

h(θ) = ht nonlinear equality constraints
aL ≤ Aiθ ≤ aU linear inequality constraints

Aeθ = at linear equality constraints
θL ≤ θ ≤ θU bound constraints

where f(θ) is the objective function to be minimized and Ti(θ) is the i-th least squares term. The
bound, linear, and nonlinear constraints are the same as described previously for (5.1). Specialized
least squares algorithms are generally based on the Gauss-Newton approximation. When differen-
tiating f(θ) twice, terms of Ti(θ)T ′′i (θ) and [T ′i (θ)]

2 result. Because Ti(θ) is zero in expected value
under the nonlinear least-squares model, the Hessian matrix of second derivatives of f(θ) can be
approximated using only first derivatives of Ti(θ). As a result, Gauss-Newton algorithms exhibit
quadratic convergence rates near the solution for those cases when the Hessian approximation is
accurate, i.e. the neglected component has negligible effect at the solution. Thus, by exploiting the
structure of the problem, the second order convergence characteristics of a full Newton algorithm
can be obtained using only first order information from the least squares terms. For problems with
nonsmooth gradients or poor finite difference approximations, see [25].

A common example for Ti(θ) might be the difference between experimental data and model
predictions for a response quantity at a particular location and/or time step, i.e.:

Ti(θ) = yi(θ)− di

where yi(θ) is the response quantity predicted by the model and di is the corresponding experimental
data. In this case, θ would have the meaning of model parameters which are not precisely known
and are being calibrated to match available data. This class of problem is known by the terms
parameter estimation, system identification, model calibration and test/analysis reconciliation, for
example.

This overview of optimization problem formulations and goals approaches underscores that no
single optimization method or algorithm works best for all types of optimization problems. The
following section offers some basic guidelines for choosing one for specific optimization problems.

CASL-U-2017-1445-000 57

5.2 Recommended Methods

In selecting an optimization method, important considerations include the type of variables in the
problem (continuous, discrete, mixed), whether a global search is needed or a local search is sufficient,
and the required constraint support (unconstrained, bound constrained, or generally constrained).
Less obvious, but equally important, considerations include the efficiency of convergence to an
optimum (i.e., convergence rate) and the robustness of the method in the presence of challenging
design space features (e.g., nonsmoothness). Sensitivity analysis (described in Chapter 3) is a critical
precursor to assess problem characteristics prior to choosing and applying an optimization method.

For example the cantilever beam optimization problem posed in (2.3) in Section 2.1 has con-
tinuous design variables only, nonlinear inequality constraints, and bound constraints. Sensitivity
analysis in Section 3.2 indicated that the objective and constraints are smooth functions of the
design variables. This can also be directly inferred from the algebraic physics equations for the
cantilever beam (2.1), though cannot for a general physics simulation.

Table 5.1 highlights a few key Dakota optimization approaches and problems for which they
are suited. The following sections offer more details on the approaches and input file examples.
Without considering specific problem knowledge or characteristics, a derivative-free local pattern
search approach is typically a good starting point. If it doesn’t find good solutions, move to a
genetic algorithm. If it is too costly, move to a surrogate-based approach. However, when problems
are smooth and not too multimodal, a local algorithm will outperform these other approaches.

Table 5.1: Guidance for selecting from the top recommended Dakota optimization algorithms.
algorithm type /
Dakota method

variable
type

cost
(samples)

goal and characteristics

gradient-based local/
OPT++ Quasi-Newton

continuous low/
medium

single local solution/improvement, as-
sumes smooth input/output mapping

local calibration /
OPT++ Gauss Newton

continuous low/
medium

same as previous line, but tailored to
least-squares calibration

derivative-free local /
Coliny Pattern Search

continuous medium/
high

single local solution; better when can’t
estimate derivatives

local w/surrogate /
Surrogate-based Local

continuous medium same as “derivative-free local,” but for
noisier or more expensive simulations

global / Coliny
Evolutionary Algorithm

continuous
or discrete

high global optimality, with ranked family
of best solutions

global w/surrogate /
Efficient Global

continuous medium same as “global,” but for more expen-
sive simulations

5.2.1 Gradient-Based Local Methods

Gradient-based optimizers are best suited for efficient navigation to a local minimum in the vicinity
of the initial point. They are not intended to find global optima in nonconvex design spaces. For
global optimization methods, see Section 5.2.3. Gradient-based optimization methods are highly
efficient, with the best convergence rates of all of the local optimization methods, and are the meth-
ods of choice when the problem is smooth, unimodal, and well-behaved. However, these methods
can be among the least robust when a problem exhibits nonsmooth, discontinuous, or multimodal

CASL-U-2017-1445-000 58

behavior. Figure 5.1 depicts a multimodal function on which gradient-based optimizers will typi-
cally find only a nearby local minimum. The derivative-free methods described in Section 5.2.2 are
more appropriate for problems with some of these characteristics.

Figure 5.1: Surface plot with contours of an example function that is locally smooth, but globally
multimodal.

Newton methods are representative of gradient-based optimization methods. These can be
derived by applying Newton’s method for root finding to ∇f(x) = 0 to find a local minimum of the
objective function. The resulting progression from current iterate xn to next iterate xn+1 is then

xn+1 = xn −
(
∇2f(xn)

)−1∇f(xn).

This naive iteration directly requires the gradient and Hessian (∇2f(x)) of the objective function.
In practice this basic iteration is enhanced with strategies to choose an appropriate step length to
achieve expected decrease with each iteration, approximate the action of the Hessian-vector product
when not directly available, and handle nonlinear constraints, for example via penalty methods.

Gradient accuracy is a critical factor for gradient-based optimizers, as inaccurate derivatives
will often lead to failures in the search or premature termination of the method. Analytic gradients
and Hessians are ideal but often unavailable. If analytic gradient and Hessian information can be
provided by an application code, a full Newton method will achieve quadratic convergence rates near
the solution. If only gradient information is available and the Hessian information is approximated
from an accumulation of gradient data, the superlinear convergence rates can be obtained. It is
most often the case for engineering applications, however, that a finite difference method will be
used by the optimization algorithm to estimate gradient values. Dakota allows the user to select the
step size for these calculations, as well as choose between forward-difference and central-difference
algorithms. The finite difference step size should be selected as small as possible, to allow for
local accuracy and convergence, but not so small that the steps are “in the noise.” This requires
an assessment of the local smoothness of the response functions using, for example, a parameter
study method. Central differencing will generally produce more reliable gradients than forward
differencing but at roughly twice the expense.

A typical iteration history and search path for a gradient-based optimization solver is shown
in Figure 5.2. Notice the algorithm efficiently going downhill with respect to the contours of the
notional objective function.

Recommended method: The recommended local derivative-based solver in Dakota comes
from the OPT++ package. A Dakota input example for the cantilever beam optimization problem

CASL-U-2017-1445-000 59

(a)

(b)

Figure 5.2: Gradient-based unconstrained optimization example: (a) screen capture of the Dakota
graphics and (b) sequence of design points (dots) evaluated (line search points omitted).

(see Section 2.1) is shown in Listing 5.1. The iteration starts at the initial iterate for (w, t) specified
in initial_point on line 17. The state variables are held fixed at their given values. The algorithm
seeks to minimize the cantilever objective function (area), within the bound constraints specified on
lines 16 and 18, subject to constraints on stress and displacement specified on line 31. The algorithm
will terminate when the convergence criteria from line 8 is met. Notice the responses section specifies
numerical gradients (line 35), indicating that Dakota should approximate the derivatives of model
responses with respect to parameters via finite differences. Dakota’s problem scaling is used to
help better condition the constraints for presentation to the optimizer. If the response is a rough
or strongly nonlinear function of the parameters, these approximations can be poor and yield bad
performance or results. Figure 5.3 shows an excerpt of the Dakota output, showing the optimal
design point found.

Variation for calibration: Listing 5.2 shows the Dakota input variation to directly treat
calibration with a least-squares specific gradient-based solver. This example tunes the active vari-
ables (line 16) θ = (E,w, t) to match synthetic experimental data from a file, with (line 32) or
without (line 31) added noise. The data were generated using the following tuning parameter val-

CASL-U-2017-1445-000 60

Listing 5.1: Dakota input file showing local gradient-based optimization on the cantilever beam
problem.

1 environment
tabular_data

3 tabular_data_file ’cantilever_opt_grad.dat ’
custom_annotated header eval_id

5

method
7 optpp_q_newton

convergence_tolerance 1.0e-4
9 scaling

11 model
single

13

variables
15 continuous_design = 2

upper_bounds 4.0 4.0
17 initial_point 2.5 2.5

lower_bounds 1.0 1.0
19 descriptors ’w’ ’t’

continuous_state = 4
21 initial_state 40000. 29.E+6 500. 1000.

descriptors ’R’ ’E’ ’X’ ’Y’
23

interface
25 direct

analysis_driver = ’mod_cantilever ’
27

responses
29 objective_functions = 1

constraints assumed <= 0 unless bounds given
31 nonlinear_inequality_constraints = 2

scale_types ’value ’
33 scales 1.0e3 1.0e-1

descriptors = ’area ’ ’stress ’ ’displacement ’
35 numerical_gradients forward

fd_step_size 1.0e-6
37 no_hessians

CASL-U-2017-1445-000 61

<<<<< Function evaluation summary: 33 total (33 new, 0 duplicate)
<<<<< Best parameters =

2.3520094791e+00 w
3.3263488002e+00 t
4.0000000000e+04 R
2.9000000000e+07 E
5.0000000000e+02 X
1.0000000000e+03 Y

<<<<< Best objective function =
7.8236039089e+00

<<<<< Best constraint values =
-6.4109754517e+02
-4.8144720935e-05

<<<<< Best data captured at function evaluation 31

Figure 5.3: Dakota output showing optimal local gradient-based optimization result for cantilever
beam.

ues: E = 2.85E7, w = 2.5, t = 3.0, and fixed state parameter values: R = 40000, X = 500,
Y = 1000. The input file specifies calibration_terms instead of objective_functions at line
30, indicating to Dakota that it should treat these responses as terms in a least-squares calibration
problem. The data here is a set of three observations, one each for area, stress, and displacement.
The NL2SOL solver is used for this example as it performs better than the default-recommended
OPT++ Gauss-Newton solver.

The calibrated parameter values from the Dakota output are shown in Figure 5.4. Dakota has
recovered the true values of the parameters, verifying the operation of the algorithm. The output
from local calibration methods also includes confidence intervals on the parameters. With 95%
confidence the true value of each parameter lies in the interval specified, given the misfit between
the model and corresponding data. When this problem is exercised with noisy data, the confidence
intervals expectedly grow larger.

For problems not suitable for local gradient-based optimization, any of the optimization methods
discussed in the following sections can be applied to Dakota responses with calibration_terms.
Dakota will automatically compute the objective function as the sum of squared residuals for pre-
sentation to the optimization algorithm.

5.2.2 Derivative-Free Local Methods

Derivative-free methods can be more robust and more inherently parallel than gradient-based ap-
proaches. They can be applied in situations were gradient calculations are too expensive or unreli-
able. In addition, some derivative-free methods can be used for global optimization which gradient-
based techniques (see 5.2.1), by themselves, cannot. For these reasons, derivative-free methods are
often go-to methods when the problem may be nonsmooth, multimodal, or poorly behaved. It is
important to be aware, however, that they exhibit much slower convergence rates for finding an
optimum, and as a result, tend to be much more computationally demanding than gradient-based
methods. They often require from several hundred to a thousand or more function evaluations for
local methods, depending on the number of variables, and may require from thousands to tens-of-
thousands of function evaluations for global methods. Given the computational cost, it is often

CASL-U-2017-1445-000 62

Listing 5.2: Dakota input file showing deterministic local calibration with a least-squares solver on
the cantilever beam problem.

1 environment
tabular_data

3 tabular_data_file ’cantilever_calibration.dat ’
custom_annotated header eval_id

5

method
7 nl2sol

convergence_tolerance 1.0e-6
9 # output verbose

11 model
single

13

variables
15 active design

continuous_design 3
17 upper_bounds 31000000 10 10

initial_point 29000000 4 4
19 lower_bounds 27000000 1 1

descriptors ’E’ ’w’ ’t’
21 continuous_state 3

initial_state 40000 500 1000
23 descriptors ’R’ ’X’ ’Y’

25 interface
direct

27 analysis_driver = ’mod_cantilever ’

29 responses
calibration_terms 3

31 calibration_data_file = ’dakota_cantilever_examples.clean.dat ’
#calibration_data_file = ’dakota_cantilever_examples.error.dat ’

33 freeform
descriptors = ’area ’ ’stress ’ ’displacement ’

35 analytic_gradients
no_hessians

CASL-U-2017-1445-000 63

<<<<< Function evaluation summary: 18 total (17 new, 1 duplicate)
<<<<< Best parameters =

2.8499999995e+07 E
2.5000000002e+00 w
2.9999999997e+00 t
4.0000000000e+04 R
5.0000000000e+02 X
1.0000000000e+03 Y

<<<<< Best residual norm = 2.9442886479e-06; 0.5 * norm^2 = 4.3344178210e-12
<<<<< Best residual terms =

-2.3943602656e-10
2.9442885534e-06
7.0639355476e-10

<<<<< Best model responses =
7.4999999998e+00
2.6666666696e+03
3.0864943605e-01

<<<<< Best data captured at function evaluation 17

Confidence Interval for E is [2.8499511022e+07, 2.8500488969e+07]
Confidence Interval for w is [2.4999189436e+00, 2.5000810568e+00]
Confidence Interval for t is [2.9999176961e+00, 3.0000823033e+00]

Figure 5.4: Dakota output showing optimal local gradient-based calibration result for cantilever
beam, clean data.

prudent to use derivative-free methods to identify regions of interest and then use gradient-based
methods to hone in on the solution. In addition to slow convergence, nonlinear constraint support
in derivative-free methods is an open area of research and, while supported by many methods in
Dakota, is not as refined as constraint support in gradient-based methods.

Local pattern search algorithms work by sampling the objective function at points on a stencil,
often chosen to align with the coordinate axes. The stencil moves, expands, and contracts as the
algorithm progresses. A typical pattern search iteration history is provided in Figures 5.5(a) and
(b), which show the locations of the function evaluations used in the pattern search algorithm.
Figure 5.5(c) provides a close-up view of the pattern search function evaluations used at the start of
the algorithm (from a starting point (x1, x2) = (0.0, 0.0). The coordinate pattern is clearly visible
at the start of the iteration history, and the decreasing size of the coordinate pattern is evident at
the design points move toward (x1, x2) = (1.0, 1.0).

While pattern search algorithms are useful in many optimization problems, this example shows
some of the drawbacks to this algorithm. While a pattern search method may make good initial
progress towards an optimum, it is often slow to converge, here not fully converging after 2000
iterations. On a smooth, differentiable function such as that depicted, a nongradient-based method
will not be as efficient as a gradient-based method. However, there are many engineering design
applications where gradient information is inaccurate or unavailable, which renders gradient-based
optimizers ineffective. Thus, pattern search algorithms are often good choices in complex engineering
applications when the quality of gradient data is suspect.

Recommended method: We recommend the Coliny Pattern Search algorithm for a derivative-
free local method. A Dakota input file shown in Listing 5.3 applies a pattern search method to

CASL-U-2017-1445-000 64

(a)

(b) (c)

Figure 5.5: Pattern search optimization example: (a) screen capture of the Dakota graphics, (b)
sequence of design points (dots) evaluated and (c) close-up view illustrating the shape of the coor-
dinate pattern used.

the cantilever beam optimization problem to minimize the objective function (area), subject to
constraints on stress and displacement (see Section 2.1). The input is similar to the input file for
the gradient-based optimization, except it has a different set of keywords in the method block of
the input file (line 6–15), and the gradient specification in the responses block has been changed to
no_gradients (line 39). The pattern search optimization algorithm used, coliny_pattern_search
is part of the SCOLIB library [20]. See the Dakota Reference Manual [2] for more information on
the method block commands that can be used with SCOLIB algorithms.

The tailing portion of the Dakota output shows the final design point and constraint values; see
Figure 5.6. A solution similar to the gradient-based approach was found, though the constraint for
displacement was slightly violated (this can often be addressed through larger constraint penalties in
derivative-free methods; see commented option in the input file). However, the algorithm required
about an order of magnitude more function evaluations.

5.2.3 Derivative-Free Global Methods

Dakota has a number of global optimization algorithms, including DiRECT, genetic algorithms,
and surrogate-based approaches. Here we discuss genetic algorithms. In contrast to pattern search

CASL-U-2017-1445-000 65

Listing 5.3: Dakota input file showing local derivative-free optimization on the cantilever beam
problem.

1 environment
tabular_data

3 tabular_data_file ’cantilever_opt_ps.dat ’
custom_annotated header eval_id

5

method
7 max_iterations = 1000

max_function_evaluations = 2000
9 coliny_pattern_search

solution_accuracy = 1e-4
11 initial_delta = 0.5

threshold_delta = 1e-4
13 exploratory_moves basic_pattern

contraction_factor = 0.75
15 # constraint_penalty = 10000

17 model
single

19

variables
21 continuous_design = 2

upper_bounds 4.0 4.0
23 initial_point 2.5 2.5

lower_bounds 1.0 1.0
25 descriptors ’w’ ’t’

continuous_state = 4
27 initial_state 40000. 29.E+6 500. 1000.

descriptors ’R’ ’E’ ’X’ ’Y’
29

interface
31 direct

analysis_driver = ’mod_cantilever ’
33

responses
35 objective_functions = 1

constraints assumed <= 0 unless bounds given
37 nonlinear_inequality_constraints = 2

descriptors = ’area ’ ’stress ’ ’displacement ’
39 no_gradients

no_hessians

CASL-U-2017-1445-000 66

<<<<< Function evaluation summary: 149 total (149 new, 0 duplicate)
<<<<< Best parameters =

2.3875000000e+00 w
3.2493181357e+00 t
4.0000000000e+04 R
2.9000000000e+07 E
5.0000000000e+02 X
1.0000000000e+03 Y

<<<<< Best objective function =
7.7577470490e+00

<<<<< Best constraint values =
-1.6832688252e-01
4.1748455156e-02

<<<<< Best data captured at function evaluation 142

Figure 5.6: Dakota output showing results from local derivative-free optimization with a pattern
search algorithm.

algorithms, which are local optimization methods, evolutionary algorithms (EA) are global opti-
mization methods. EAs are best suited to optimization problems that have multiple local optima,
and where gradients are either too expensive to compute or are not readily available.

Evolutionary algorithms work by generating an initial random sample in the parameter space,
computing function values/constraints at those points, and then determining the next places to sam-
ple based on biological genetic selection principles of mutation and fitness. A simplified evolutionary
or genetic algorithm for optimization would include:

1. Initialize a random population (sample) of individual x values.

2. Evaluate the fitness with respect to optimization objective and constraints.

3. Select more fit individuals as parents to reproduce.

4. Recombine and mutate to create a new population.

5. Iterate to (2.) until convergence is reached.

Here the implementation details of each step, for example how to select parents, how to combine and
mutate, vary greatly among implementations, but are usually biologically inspired. Figure 5.7(a)
shows the population of 50 randomly selected design points that comprise the first generation of the
EA, and Figure 5.7(b) shows the final population of 50 design points, where most of the 50 points
are clustered near (x1, x2) = (0.98, 0.95).

Listing 5.4 shows a Dakota input file that uses an EA to solve the cantilever beam optimization
problem as described in Section 2.1. Each generation of the EA has a population size of 50 (line 11).
The algorithm will take at most 100 iterations comprising no more than 2000 function evaluations
(lines 7 and 8). The EA software available in Dakota provides the user with much flexibility in
choosing the settings used in the optimization process. The details of all the settings are not
discussed here; see [2] and [20].

On completion, the file cantilever_opt_ea.dat provides a listing of the design parameter values
and objective function values for all 2,000 design points evaluated during the running of the EA.
The final solution is shown in Figure 5.8.

CASL-U-2017-1445-000 67

Listing 5.4: Dakota input file showing global optimization on the cantilever beam problem with an
evolutionary algorithm.
environment

2 tabular_data
tabular_data_file ’cantilever_opt_ea.dat ’

4 custom_annotated header eval_id

6 method
max_iterations = 100

8 max_function_evaluations = 2000
coliny_ea

10 seed = 11011011
population_size = 50

12 fitness_type merit_function
mutation_type offset_normal

14 mutation_rate 1.0
crossover_type two_point

16 crossover_rate 0.0
replacement_type chc = 10

18

model
20 single

22 variables
continuous_design = 2

24 upper_bounds 4.0 4.0
initial_point 2.5 2.5

26 lower_bounds 1.0 1.0
descriptors ’w’ ’t’

28 continuous_state = 4
initial_state 40000. 29.E+6 500. 1000.

30 descriptors ’R’ ’E’ ’X’ ’Y’

32 interface
direct

34 analysis_driver = ’mod_cantilever ’

36 responses
objective_functions = 1

38 # constraints assumed <= 0 unless bounds given
nonlinear_inequality_constraints = 2

40 descriptors = ’area ’ ’stress ’ ’displacement ’
no_gradients

42 no_hessians

CASL-U-2017-1445-000 68

(a) (b)

Figure 5.7: Evolutionary algorithm optimization example: 50 design points in the (a) initial and
(b) final populations selected by the evolutionary algorithm.

<<<<< Function evaluation summary: 2007 total (2007 new, 0 duplicate)
<<<<< Best parameters =

2.3547960771e+00 w
3.3249245714e+00 t
4.0000000000e+04 R
2.9000000000e+07 E
5.0000000000e+02 X
1.0000000000e+03 Y

<<<<< Best objective function =
7.8295193371e+00

<<<<< Best constraint values =
-6.8024421496e+02
-3.4463344891e-03

<<<<< Best data captured at function evaluation 1982

Figure 5.8: Dakota output showing optimal point found by a global evolutionary algorithm.

EAs are better suited to optimization problems where conventional gradient-based optimization
fails, such as situations where there are multiple local optima and/or gradients are not available. In
such cases, the computational expense of an EA is warranted since other optimization methods are
not applicable or impractical. In many optimization problems, EAs often quickly identify promising
regions of the design space where the global minimum may be located. However, an EA can be slow
to converge to the optimum. For this reason, it can be an effective approach to combine the global
search capabilities of an EA with the efficient local search of a gradient-based algorithm in a hybrid
optimization strategy. In this approach, the optimization starts by using a few iterations of an EA
to provide the initial search for a good region of the parameter space (low objective function and/or
feasible constraints), and then it switches to a gradient-based algorithm (using the best design point
found by the EA as its starting point) to perform an efficient local search for an optimum design
point. More information on this hybrid approach is provided in the “Hybrid Minimization” section

CASL-U-2017-1445-000 69

of the “Advanced Methods” chapter of the Dakota User’s Manual [1].
Another effective method for global optimization, especially for costlier computational models,

is the Efficient Global Optimization (EGO) approach. This is discussed in the section “Efficient
Global Minimization” of the Dakota User’s Manual [1].

5.3 Summary and Additional Approaches

In selecting an optimization method, important considerations include the type of variables in the
problem (continuous, discrete, mixed), whether a global search is needed or a local search is sufficient,
and the required constraint support (unconstrained, bound constrained, or generally constrained).
Less obvious, but equally important, considerations include the efficiency of convergence to an
optimum (i.e., convergence rate) and the robustness of the method in the presence of challenging
design space features (e.g., nonsmoothness).

Table 5.2 provides a more extensive reference for selecting from among all of Dakota’s optimiza-
tion methods. Here blank fields inherit the values from above. With respect to constraint support,
the methods with more advanced constraint support are also applicable to the lower constraint sup-
port levels; they are listed only at their highest level of constraint support for brevity. For example,
all methods listed as supporting nonlinear constraints also support bound constraints.

Because of the computational cost of running simulation models, surrogate-based optimization
(SBO) methods are often used to reduce the number of actual simulation runs. In SBO, a surrogate
or approximate model is automatically constructed by Dakota based on a limited number of simu-
lation runs. The optimization is then performed on the surrogate model. Dakota has an extensive
framework for managing a variety of local, multipoint, global, and hierarchical surrogates for use
in optimization. Finally, sometimes there are multiple objectives that one may want to optimize
simultaneously instead of a single scalar objective. In this case, one may employ multi-objective
methods described in “Optimization Capabilities” in the Dakota User’s Manual to either form a
single composite objective, or assess the trade-off between multiple objectives directly.

CASL-U-2017-1445-000 70

Table 5.2: Detailed guidelines for selecting from among all Dakota optimization methods. Blank
fields inherit the values from above.

Method Desired Problem Applicable Methods
Classification Characteristics

smooth; continuous variables optpp_cg
no constraints

smooth; continuous variables; dot_bfgs, dot_frcg, conmin_frcg
bound constraints

Gradient-Based smooth; continuous variables; npsol_sqp, nlpql_sqp, dot_mmfd,
Local bound constraints, dot_slp, dot_sqp, conmin_mfd,

linear and nonlinear constraints optpp_newton, optpp_q_newton,
optpp_fd_newton,

weighted sums (multiobjective),
pareto_set strategy (multiobjective)

Gradient-Based smooth; continuous variables; hybrid strategy,
Global bound constraints, multi_start strategy

linear and nonlinear constraints

nonsmooth; continuous variables; optpp_pds
bound constraints

nonsmooth; continuous variables; asynch_pattern_search,
Derivative-Free bound constraints, coliny_cobyla, coliny_pattern_search,

Local linear and nonlinear constraints coliny_solis_wets,
surrogate_based_local

nonsmooth; continuous variables;
discrete variables; bound constraints, mesh_adaptive_search

nonlinear constraints

nonsmooth; continuous variables; ncsu_direct
bound constraints

nonsmooth; continuous variables; coliny_direct, efficient_global,
Derivative-Free bound constraints, surrogate_based_global

Global linear and nonlinear constraints

nonsmooth; continuous variables, coliny_ea, soga,
discrete variables; bound constraints, moga (multiobjective)

linear and nonlinear constraints

CASL-U-2017-1445-000 71

Chapter 6

Uncertainty Quantification

At a high level, uncertainty quantification (UQ) constitutes the process of characterizing input,
numerical, and experimental uncertainties – consisting of both measurement errors and variability
in replicate data, propagating these uncertainties through a computational model, and performing
statistical or interval assessments on the resulting responses. This process determines the effect of
uncertainties and assumptions on model responses or quantities of interest (QoI). In Section 6.1, we
summarize techniques to propagate input uncertainties through models whereas in Section 6.2, we
discuss Bayesian techniques to quantify input uncertainties.

For this discussion, inputs collectively refer to model parameters, initial conditions, boundary
conditions, or exogenous forces. For models in which inputs are derived from closure, constitutive
or phenomenological relations, one must employ model calibration techniques to estimate means,
moments, or ultimately probability density functions (PDF) for these calibrated inputs based on
experimental data or high-fidelity codes. This is often termed inverse uncertainty quantification.
For CASL applications, inputs requiring calibration include cross-section values, closure and phe-
nomenological parameters, and initial and boundary conditions.

The quantification of response or output uncertainties facilitates optimal design and decision
making and is necessary to ensure robustness, performance or safety margins. For example, outputs
specified for emergency core cooling systems include peak clad temperatures and maximum local
cladding oxidation. The manner in which output statistics are employed depends on the application.
For the assessment of design margins, the sample mean x̄ and sample variance s2 can be used to
construct 2σ confidence intervals x̄ ± 2s whereas a predictive distribution for the output might be
compared to replicate data to assess validation.

Wilks’ formula constitutes a classical approach for assessing output uncertainty [40, 57]. In this
coverage approach, the code is run N times for randomly selected input values chosen from expert-
specified intervals. The outputs are then ranked to establish tolerance bounds for the response.
This approach has the advantage that the number of required code evaluations is independent of
the number of parameters. However, the resulting tolerance bounds can be overly conservative and
the techniques detailed in Sections 6.1 and 6.2 yield more precise bounds or densities for inputs and
outputs.

UQ is related to sensitivity analysis, detailed in Chapter 3, in that the common goal is to gain
an understanding of how variations in the parameters or inputs affect the response functions of
the engineering design problem. However, for UQ, some or all of the components of the parame-
ter vector are considered to be uncertain as specified by particular probability distributions (e.g.,
normal, exponential, extreme value), or other uncertainty structures. By assigning specific distri-
butional structure to the inputs, distributional structure for the outputs (i.e., response statistics)

CASL-U-2017-1445-000 72

can be inferred. UQ can thus be defined as the process of quantifying the imprecision of computed
model responses or quantities of interest whereas sensitivity analysis ascertains how uncertainty in
model outputs can be apportioned to uncertainties in model inputs when taken either singly or in
combination over the range of input values.

6.1 Uncertainty Propagation

Whereas Dakota provides a number of options for propagating uncertainties through models, we
focus on sampling and stochastic polynomial methods. The selection of these techniques to employ
can be based on the following criteria:

• Sampling methods are applicable for nonsmooth and/or multi-modal response functions and
general input densities including those for correlated parameters, initial conditions, boundary
conditions or exogenous forces. Since sampling methods require numerous model evaluations
– e.g., hundreds to millions – they necessitate that models be efficient to evaluate or the use
of suitable surrogate models. Sampling methods yield response samples, which can be post-
processed – e.g., using kernel density estimation (KDE) – to construct response densities.

• Stochastic polynomial methods require smooth response functions. Stochastic collocation (SC)
methods are applicable for general input densities whereas nonintrusive polynomial chaos ex-
pansions (PCE) require the specification or construction of orthogonal polynomials. For nor-
mal or uniform input densities, Hermite or Legendre polynomials are employed. For densities
that do not correspond to members in the Askey family of polynomials, Dakota provides the
capability of employing empirical histograms to generate orthogonal polynomials. Evaluation
of the quantity of interest often necessitates that inputs are mutually independent, which
is generally not the case, but can often be achieved through Nataf transformations. These
methods utilize Dakota sparse grid routines to provide highly efficient evaluation of response
moments and, for sensitivity analysis, Sobol global sensitivity indices.

We note that Dakota provides a number of other techniques – including local and global relia-
bility methods, interval methods, and mixed UQ algorithms – to propagate uncertainties through
models. Readers are referred to the “Uncertainty Quantification Capabilities” chapter of [1] for
details about these methods.

We do not differentiate between aleatoric uncertainties, which are inherent to a problem or
experiments and are intrinsically probabilistic in nature, and epistemic uncertainties, which are
due to lack of knowledge. We refer readers to [47] for details regarding the nature of these un-
certainties and to the “Uncertainty Quantification Capabilities” chapter of [1] for a description of
how Dakota algorithms accommodate these two classes of uncertainties. Further details regarding
various uncertainty propagation techniques are provided in [47, 50].

6.1.1 Sampling Methods

Sampling-based methods are the most robust uncertainty techniques available, are applicable to
almost all simulations, and possess rigorous error bounds. Consequently, they should be used
whenever the function is relatively inexpensive to compute and adequate sampling can be performed.
In the case of computationally expensive simulations, however, the number of function evaluations
required by traditional techniques such as Monte Carlo and Latin hypercube sampling (LHS) quickly
becomes prohibitive, especially if tail statistics are needed. We note that the issues associated with
tail statistics can be mitigated through the use of importance sampling.

CASL-U-2017-1445-000 73

Alternatively, one can apply the traditional sampling techniques to a surrogate function ap-
proximating the expensive computational simulation. However, if this approach is selected, the
user should be aware that it is difficult to assess the accuracy of the results. Unlike the case of
surrogate-based local minimization, there is no simple pointwise calculation to verify the accuracy of
the approximate results. This is due to the functional nature of uncertainty quantification; i.e., the
accuracy of the surrogate over the entire parameter space needs to be considered, not just around
a candidate optimum as in the case of surrogate-based local optimization. This issue especially
manifests itself when trying to estimate low probability events such as the catastrophic failure of a
system.

Due to the computational complexity of CASL codes, sampling methods will generally need
to be applied to surrogate models rather than physics-based codes. Hence the issues associated
with establishing the accuracy of the surrogate must be addressed or the accuracy of the surrogate-
based sampling results verified for these codes. Techniques to establish surrogate accuracy include
“leave-one-out” cross-validation for Gaussian processes [6] and the Dakota K-fold cross-validation
capability, which admits “leave-one-out” as a special case. Details regarding the use of the Dakota
sampling capability are provided in Section 6.1.5.

6.1.2 Stochastic Polynomial Methods

Stochastic polynomial methods comprise a second class of forward propagation techniques, also
available in Dakota. The development of these techniques mirrors that of deterministic Galerkin
and finite element analysis utilizing the notions of projection, collocation, orthogonality, and weak
convergence [13, 14]. Rather than providing point estimates, they form an approximation to the
functional relationship between random inputs and response functions, which provides a represen-
tation of output uncertainties for multi-code simulations. Expansion methods include nonintrusive
polynomial chaos expansions (PCE), which employ multivariate orthogonal polynomials that are
tailored to particular input probability distributions, and stochastic collocation (SC), which employs
multivariate interpolation polynomials.

For certain applications, sampling-based models can be efficiently combined with stochastic
polynomial methods. For example, it is often advantageous to employ Latin hypercube sampling
directly or to construct a general surrogate, and then subsequently use the evaluated samples with
a regression-based nonintrusive polynomial chaos expansion.

Nonintrusive Polynomial Chaos Expansions (PCE)

To motivate nonintrusive PCE methods, which for certain implementation regimes are also
termed pseudo-spectral or discrete projection methods, we consider a parameter-dependent response
Y (X) whereX ∈ <M . For random inputsX, this response is represented by the truncated expansion

Y (X) =
J∑
j=0

αjΨj(X) (6.1)

where Ψj(X) are polynomials that are orthogonal with respect to inner products corresponding to
common probably density functions. For example, Hermite and Legendre polynomials with weights
e−x

2/2 and 1 are respectively used to represent single-variate normal and uniform distributions.
As detailed in the “Stochastic Expansion Methods” chapter of the Dakota Theory Manual [3] and
Chapter 10 of [47], tensored polynomials are constructed as basis functions for multivariate densities.

If we denote the density by ρ(x) and note that Ψ0(X) = 1, if follows that

E[Ψ0(X)] = 1

CASL-U-2017-1445-000 74

and
E[Ψi(X)Ψj(X)] =

∫
Γ

Ψi(x)Ψj(x)ρ(x)dx

= δijγi

where Γ = [0, 1]M for scaled Legendre polynomials, δij is the Kronecker delta and the normalization
factor is

γi = E[Ψ2
i (X)].

We note that γi can be computed analytically for each polynomial in the Askey family, which
includes Hermite and Legendre polynomials.

Based on these orthogonality properties, it follows that the mean and variance of Y are

E[Y (X)] = α0

Var[Y (X)] =

J∑
j=1

α2
jγj .

(6.2)

Hence these values, as well as higher order moments, can be computed very efficiently once one has
constructed the coefficients αj .

For the nonintrusive PCE method, one takes the weighted inner product of (6.1) with respect
to Ψj and enforces orthogonality to obtain

αj =
1

γj

∫
Γ
Y (x)Ψj(x)ρ(x)dx .

Hence the determination of the coefficients αj requires numerical quadrature over Γ ⊂ <M . In
Dakota, this is achieved using tensored Gaussian or sparse grid quadrature techniques. The evalu-
ation of

αj ≈
1

γj

Nq∑
i=1

Y (xi)Ψj(xi)ρ(xi)wi (6.3)

thus employs codes nonintrusively, or as a black box, to evaluate the response at parameter values
xi.

As detailed in [3], the number of terms Nt in a polynomial chaos expansion of total order p,
involving M random variables, is Nt = (M+p)!

M !p! . For high expansion orders and a large number
of random variables, Nt can be huge, which can lead to large memory requirements and potential
segmentation faults. To address this, the maximal expansion order should be chosen so that the
number of terms does not exceed 10 times the number of training points.

Details regarding this method can be found in Chapter 10 of [47]. Alternatively, one can deter-
mine coefficients using Dakota’s linear regression capabilities as detailed in the “Stochastic Expan-
sion Methods” chapter of the Dakota Theory Manual [3]. The implementation of this technique in
Dakota is illustrated in Section 6.1.5.

Stochastic Collocation (SC)

In the stochastic collocation method, one represents the response for random inputs X as

Y (X) =
J∑
j=1

rjLj(X)

CASL-U-2017-1445-000 75

where rj = Y (xj) is the response value at the interpolation point xj and Lj(x) is a Lagrange
polynomial. In 1-D, the Lagrange polynomial can be represented as

Lj(x) =
J∏
k=1
k 6=j

x− xk
xj − xk

which highlights the property that Lj(xi) = δij . For moderate parameter dimensionality, Dakota
provides the capability for implementing multivariate interpolation on Smolyak sparse grids. As
detailed in the “Stochastic Expansion Methods” chapter of the Dakota Theory Manual [3], Dakota
also provides the capability for implementing local or global interpolating polynomials and either
value-based or gradient-enhanced representations. The implementation of stochastic collocation in
Dakota is illustrated in Section 6.1.5.

Table 6.1 provides a reference for choosing a Dakota propagation method or strategy based on
the properties of the model.

Table 6.1: Guidelines for uncertainty propagation method selection.

Method Desired Problem Applicable Methods
Classification Characteristics

Sampling Nonsmooth and/or multi-modal sampling
response functions; general densities;

computationally efficient models or surrogates
Stochastic Smooth response functions; can polynomial_chaos
Polynomial be combined with Dakota stoch_collocation

sparse grid routines

6.1.3 Verification

Verification comprises a critical component of uncertainty propagation when quantifying response
variability. For many problems, one or more of the following steps can be employed to verify response
uncertainties. The use of this verification strategy is illustrated in Section 6.1.5.

(i) Compare the mean, variance, skewness and kurtosis provided by noninvasive PCE and stochas-
tic collocation.

(ii) Construct the response densities using the sampling methods discussed in Section 6.1.1 and
compare the resulting moments with those computed in (i).

(iii) Employ energy statistics, as developed in [51, 52], to quantify whether or not response densities
computed via sampling, noninvasive PCE and stochastic collocation correspond to the same
distribution.

(iv) For linearly parameterized problems with uncorrelated Gaussian inputs Xi ∼ N (µi, σ
2
i), the

response Y =
∑N

i=1 aiXi is normally distributed with mean and variance

E(Y) =
N∑
i=1

aiµi , var(Y) =
N∑
i=1

a2
iσ

2
i . (6.4)

These moments can be compared with those constructed in (i) and (ii).

CASL-U-2017-1445-000 76

6.1.4 Prediction Intervals

One goal when propagating uncertainties is to construct credible or prediction intervals for the
model response or quantity of interest. This can be achieved using the methods of Section 6.1.1 to
sample from input densities, constructed either experimentally or using the Bayesian model calibra-
tion techniques detailed in Section 6.2. The propagation of input density information alone yields
credible intervals, which quantify the accuracy of the model. The simultaneous propagation of input
and experimental uncertainties – e.g., using the statistical model (6.5) – yields prediction intervals,
which quantify the probability of observing the next experimental measurement or numerical sim-
ulation. For example, the interval (a, b) is a 95% prediction interval if the probability that a future
experimental observation yi falls within (a, b) is at least 0.95. For this reason, prediction intervals
are typically preferable to credible intervals when experimentally validating model behavior. Details
regarding posterior predictive distributions can be found in [12].

6.1.5 Uncertainty Propagation: Cantilever Beam Example

We illustrate the sampling and stochastic polynomial methods for the cantilever beam example
detailed in Section 2.1. Specifically, we illustrate the use of random sampling, noninvasive polyno-
mial chaos expansions, and stochastic collocation to propagate parameter uncertainties through the
model to quantify uncertainties in the output area, stress, and displacement. In all cases, parameters
were assumed to have the normal distributions R ∼ N (4.0E5, 4.0E6), E ∼ N (2.9E7, 2.1025E12),
X ∼ N (5.0E2, 1.0E4) and Y ∼ N (1.0E3, 1.0E4). Additional details regarding the performance of
random sampling, PCE, and stochastic collocation, for this example, are provided in [50].

Random Sampling

We first illustrate the use of random sampling to construct densities for the output based on 106

samples from the assumed normal input distributions. The input file is shown in Listing 6.1.
An excerpt of the random sampling output is shown in Figure 6.1. First the mean, standard

deviation, skewness, and kurtosis moments are calculated for each of the three response functions,
as well as 95% confidence intervals for each response mean and standard deviation. Correlation
matrices among all inputs and outputs are provided to determine the degree of linear relationships
among variables. For those cases in which responses do not exhibit a dependence on inputs – e.g.,
area is not a function of R,E,X, Y – NaN is returned to indicated that there is no variability with
respect to those inputs. Finally, the full output provides a listing of CDF probabilities.

Nonintrusive Polynomial Chaos Expansions (PCE)

A typical Dakota input file for performing uncertainty propagation using nonintrusive PCE is shown
in Listing 6.2. In this example, we compute CDF probabilities for 17 probability levels of the
cantilever beam equations. Due to the low parameter dimensionality, we select Gaussian quadrature
with a total of 57 function evaluations to compute the nonintrusive PCE coefficients (6.3), using
tensor product quadrature points. The tensor product generates all combinations of values from
each individual dimension so it is an all-way pairing of points. We note that one would replace
tensored Gaussian quadrature with sparse grid techniques for moderate parameter dimensionality;
e.g., M = 5 to approximately M = 40, depending on the regularity of the modeling equations.

Once the expansion coefficients have been calculated, some statistics can be computed analyti-
cally – e.g., via (6.2) – whereas others must be evaluated numerically. For the numerical portion, the
input file specifies the use of 10000 samples, which will be evaluated on the expansion to compute

CASL-U-2017-1445-000 77

Listing 6.1: UQ input for random sampling.
Dakota Input File: cantilever_sampling.in

2

environment
4 tabular_data

tabular_data_file = ’cantilever_sampling.dat ’
6 custom_annotated header eval_id

8 method
sampling

10 sample_type random
samples = 1000

12 seed = 17
response_levels = 1. 5. 10.

14 10000. 20000. 40000.
1. 2. 3.

16 model
single

18

variables
20 active uncertain

continuous_design = 2
22 initial_point 2.5 2.5

descriptors ’w’ ’t’
24 normal_uncertain = 4

means = 40000. 29.E+6 500. 1000.
26 std_deviations = 2000. 1.45E+6 100. 100.

descriptors = ’R’ ’E’ ’X’ ’Y’
28

interface
30 direct

analysis_driver = ’mod_cantilever ’
32

responses
34 response_functions = 3

descriptors = ’area ’ ’stress ’ ’displacement ’
36 no_gradients

no_hessians

CASL-U-2017-1445-000 78

Statistics based on 1000 samples:

Moment-based statistics for each response function:
Mean Std Dev Skewness Kurtosis

area 6.2500000000e+00 0.0000000000e+00 0.0000000000e+00 -3.0000000000e+00
stress 1.7353650406e+04 5.8085356413e+03 -6.5053618765e-03 7.3520733236e-02

displacement 1.7161216049e+00 4.1203461736e-01 1.3498700788e-01 -1.6987570074e-02

95% confidence intervals for each response function:
LowerCI_Mean UpperCI_Mean LowerCI_StdDev UpperCI_StdDev

area 6.2500000000e+00 6.2500000000e+00 0.0000000000e+00 0.0000000000e+00
stress 1.6993203553e+04 1.7714097260e+04 5.5646488747e+03 6.0749462045e+03

displacement 1.6905529262e+00 1.7416902836e+00 3.9473425169e-01 4.3093273234e-01

Simple Correlation Matrix among all inputs and outputs:
R E X Y area stress displacement

R 1.00000e+00
E -1.09891e-03 1.00000e+00
X -1.89011e-03 3.84943e-04 1.00000e+00
Y 2.28006e-03 1.47231e-03 -1.28899e-04 1.00000e+00

area nan nan nan nan nan
stress -3.46903e-01 1.62695e-03 6.50987e-01 6.74942e-01 nan 1.00000e+00
disp. 1.99216e-03 -4.87018e-01 3.80836e-01 7.81233e-01 nan 7.74982e-01 1.00000e+00

Partial Correlation Matrix between input and output:
area stress displacement

R nan -1.00000e+00 5.02670e-03
E nan nan -9.87430e-01
X nan 1.00000e+00 9.79611e-01
Y nan 1.00000e+00 9.95042e-01

Simple Rank Correlation Matrix among all inputs and outputs:
R E X Y area stress displacement

R 1.00000e+00
E 1.29417e-02 1.00000e+00
X -1.02171e-02 3.68951e-03 1.00000e+00
Y 3.49896e-03 5.36687e-03 4.26256e-03 1.00000e+00

area nan nan nan nan nan nan
stress -3.31948e-01 -7.20001e-08 6.39440e-01 6.52457e-01 nan 1.00000e+00

disp -1.33517e-03 -4.74628e-01 3.68797e-01 7.57213e-01 nan 7.57396e-01 1.00000e+00

Partial Rank Correlation Matrix between input and output:
area stress displacement

R nan -7.97285e-01 2.39053e-02
E nan -6.40293e-03 -8.86932e-01
X nan 9.31104e-01 8.26712e-01
Y nan 9.34429e-01 9.49696e-01

Figure 6.1: Excerpt of UQ output for random sampling.

the CDF probabilities. We summarize in Figure 6.2 excerpts of the output. The full output lists
a summary of the PCE coefficients, which reproduce the function for a Hermite polynomial basis.
The analytic statistics for mean, standard deviation, and covariance are then presented for each of
the response functions: area, stress, and displacement. Finally, we note the numerical results for the
CDF probabilities based on 105 samples performed on the expansion. For example, approximately
50% of the displacement samples are determined to be less than or equal to 1.709 inches.

CASL-U-2017-1445-000 79

Listing 6.2: UQ input for nonintrusive polynomial chaos expansions.
1 # Dakota Input File: cantilever_uq_pce.in

3 environment
tabular_data

5 tabular_data_file = ’cantilever_uq_pce.dat ’
graphics

7

method
9 polynomial_chaos

sparse_grid_level = 2 #non_nested
11 sample_type lhs

seed 12347
13 samples = 10000

num_probability_levels = 0 17 17
15 probability_levels =

.001 .01 .05 .1 .15 .2 .3 .4 .5 .6 .7 .8 .85 .9 .95 .99 .999
17 .001 .01 .05 .1 .15 .2 .3 .4 .5 .6 .7 .8 .85 .9 .95 .99 .999

cumulative distribution
19

model
21 single

23 variables
active uncertain

25 continuous_design = 2
initial_point 2.5 2.5

27 descriptors ’w’ ’t’
normal_uncertain = 4

29 means = 40000. 29.E+6 500. 1000.
std_deviations = 2000. 1.45E+6 100. 100.

31 descriptors = ’R’ ’E’ ’X’ ’Y’

33 interface
direct

35 analysis_driver = ’mod_cantilever ’

37 responses
response_functions = 3

39 descriptors = ’area ’ ’stress ’ ’displacement ’
no_gradients

41 no_hessians

CASL-U-2017-1445-000 80

Statistics derived analytically from polynomial expansion:
Moment-based statistics for each response function:

Mean Std Dev Skewness Kurtosis
stress

expansion: 1.7600000000e+04 5.7871581973e+03
numerical: 1.7600000000e+04 5.7871581973e+03 9.4100742175e-15 6.2172489379e-15

displacement
expansion: 1.7201243431e+00 4.0644795983e-01
numerical: 1.7201243431e+00 4.0644787032e-01 1.5009952217e-01 4.9005496977e-02

Covariance matrix for response functions:
[[7.3191614098e-30 5.3786836096e-13 6.5282177146e-17

5.3786836096e-13 3.3491200000e+07 1.8163897036e+03
6.5282177146e-17 1.8163897036e+03 1.6519994405e-01]]

Cumulative Distribution Function (CDF) for stress:
Response Level Probability Level Reliability Index General Rel Index
-------------- ----------------- ----------------- -----------------

2.4921421856e+02 1.0000000000e-03
4.1489075797e+03 1.0000000000e-02
7.9708753041e+03 5.0000000000e-02
1.0090342657e+04 1.0000000000e-01
1.1589780322e+04 1.5000000000e-01
1.2731567123e+04 2.0000000000e-01
1.4564078343e+04 3.0000000000e-01
1.6151010310e+04 4.0000000000e-01
1.7689441098e+04 5.0000000000e-01
1.9129203866e+04 6.0000000000e-01
2.0683233939e+04 7.0000000000e-01
2.2457356004e+04 8.0000000000e-01
2.3589089220e+04 8.5000000000e-01
2.4920875151e+04 9.0000000000e-01
2.7044322788e+04 9.5000000000e-01
3.0752664401e+04 9.9000000000e-01
3.5331778223e+04 9.9900000000e-01

Cumulative Distribution Function (CDF) for displacement:
Response Level Probability Level Reliability Index General Rel Index
-------------- ----------------- ----------------- -----------------

5.8392829293e-01 1.0000000000e-03
8.2796204947e-01 1.0000000000e-02
1.0598405267e+00 5.0000000000e-02
1.2097152423e+00 1.0000000000e-01
1.2968601525e+00 1.5000000000e-01
1.3747889667e+00 2.0000000000e-01
1.4999245316e+00 3.0000000000e-01
1.6076201989e+00 4.0000000000e-01
1.7093348267e+00 5.0000000000e-01
1.8118345186e+00 6.0000000000e-01
1.9241773807e+00 7.0000000000e-01
2.0596369386e+00 8.0000000000e-01
2.1417150361e+00 8.5000000000e-01
2.2453314112e+00 9.0000000000e-01
2.3964502080e+00 9.5000000000e-01
2.7290918315e+00 9.9000000000e-01
3.0882954345e+00 9.9900000000e-01

Figure 6.2: Excerpt of UQ output for nonintrusive polynomial chaos expansion.

CASL-U-2017-1445-000 81

Stochastic Collocation

Here we illustrate the use of stochastic collocation built on an anisotropic sparse grid defined from
numerically-generated orthogonal polynomials; see Chapters 10 and 11 of [47] for details regarding
stochastic collocation. The input file is shown in Listing 6.3. In this example, we again compute
CDF probabilities of stress and displacement for varying response levels. This example requires 233
function evaluations to compute the interpolating polynomials used for stochastic collocation.

Listing 6.3: UQ input for stochastic collocation.
Dakota Input File: cantilever_uq_sc.in

2

environment
4 tabular_data

tabular_data_file = ’cantilever_uq_sc.dat ’
6

8 method
stoch_collocation

10 sparse_grid_level = 3
#dimension_preference = 2 1

12 samples = 10000 seed = 12347 rng rnum2
response_levels = 1. 5. 10. 15. 20. 50.

14 1. 10. 5000. 10000. 50000. 100000.
.1 1. 2. 3. 5. 10.

16 variance_based_decomp #interaction_order = 1
output silent

18

variables
20 #lognormal_uncertain = 2

means = 1. 1.
22 #std_deviations = 0.5 0.5

#descriptors = ’x1’ ’x2 ’
24

active uncertain
26 continuous_design = 2

initial_point 2.5 2.5
28 descriptors ’w’ ’t’

normal_uncertain = 4
30 means = 40000. 29.E+6 500. 1000.

std_deviations = 2000. 1.45E+6 100. 100.
32 descriptors = ’R’ ’E’ ’X’ ’Y’

34 interface
direct

36 analysis_driver = ’mod_cantilever ’

38 responses
response_functions = 3

40 descriptors = ’area ’ ’stress ’ ’displacement ’
no_gradients

42 no_hessians

Once the expansion coefficients have been calculated, some statistics are available analytically
and others must be evaluated numerically. For the numerical portion, the input file specifies the use
of 10000 samples, which will be evaluated on the expansion to compute the CDF probabilities. We

CASL-U-2017-1445-000 82

summarize in Figure 6.3 excerpts from the output. We first note the moment statistics for mean,
standard deviation, skewness, and kurtosis computed by numerical integration (see the “Analytic
Moments” section in the “Stochastic Expansion Methods” chapter in the Dakota Theory Manual [3]),
where the numerical row corresponds to integration using the original response values and the
expansion row corresponds to integration using values from the interpolant. The response covariance
and global sensitivity indices (Sobol indices) are presented next. This example shows that for stress,
the variables R, X, and Y all play significant roles, but that the interactions between them are
relatively negligible. For displacement, E, X, and Y have significant influence, while the interactions
between E and X, E and Y , X and Y , and the three way interaction have significantly less effect.
Finally, in the full output, we see the numerical results for the CDF probabilities based on 10000
samples performed on the expansion.

Method Verification

We illustrate here the verification techniques detailed in Section 6.1.3. We compile in Tables 6.2
and 6.3 the first four moments provided by random sampling, noninvasive PCE and stochastic
collocation. Additionally, since stress is a linear function of the normally distributed inputs X,Y
and R, the relations (6.2) can be used to compute analytic values for the stress moments.

We note that the moments for each of the three methods are in close agreement, with the
exception of the third and fourth moments in the stress output. Since the stress is linearly dependent
on the parameters, it is expected that the PCE and collocation methods should produce exact results
for these two moments, neglecting rounding error. By comparison, the skewness and kurtosis,
obtained with random sampling, are non-negligible but have values that are still five to seven orders
of magnitude smaller than the sample mean and variance.

The stress density constructed by random sampling is compared in Figure 6.4(a) with normal
densities whose mean and variance (6.2) are constructed using coefficients αj determined by nonin-
trusive PCE or stochastic collocation. The displacement density constructed by random sampling is
plotted in Figure 6.4(b). We cannot compare to Gaussian representations with mean and variance

Stress
Mean Std. Deviation Skewness Kurtosis

Analytic 1.760e+04 5.787e+03 – –
Sampling 1.735e+04 5.809e+03 -6.505e-03 7.352e-02
PCE 1.760e+04 5.787e+03 9.410e-15 6.217e-15
Collocation 1.760e+04 5.787e+03 -1.842e-14 5.773e-15

Table 6.2: Comparison of moments for stress from random sampling, polynomial chaos expansion,
and stochastic collocation methods.

Displacement
Mean Std. Deviation Skewness Kurtosis

Sampling 1.716 4.120e-01 1.350e-01 -1.700e-02
PCE 1.720 4.064e-01 1.501e-01 4.901e-02
Collocation 1.720 4.064e-01 1.504e-01 6.878e-02

Table 6.3: Comparison of moments for displacement from random sampling, polynomial chaos
expansion, and stochastic collocation methods.

CASL-U-2017-1445-000 83

Statistics derived analytically from polynomial expansion:

Moment-based statistics for each response function:

Mean Std Dev Skewness Kurtosis
stress

expansion: 1.7600000000e+04 5.7871581973e+03 -1.3819173712e-14 5.3290705182e-15
numerical: 1.7600000000e+04 5.7871581973e+03 -1.8416777990e-14 5.7731597281e-15

displacement
expansion: 1.7201241681e+00 4.0644979045e-01 1.5036497320e-01 6.8782204635e-02
numerical: 1.7201241681e+00 4.0644979045e-01 1.5036497320e-01 6.8782204635e-02

Covariance matrix for response functions:
[[7.8886090522e-31 -3.2350298255e-26 -6.5675038652e-31

-3.2350298255e-26 3.3491200000e+07 1.8163966854e+03
-6.5675038652e-31 1.8163966854e+03 1.6520143216e-01]]

Global sensitivity indices for each response function:

stress Sobol indices:
Main Total

1.1943435888e-01 1.1943435888e-01 R
-4.9831897744e-14 1.3881742943e-13 E
4.4028282056e-01 4.4028282056e-01 X
4.4028282056e-01 4.4028282056e-01 Y

Interaction
-2.3136238238e-14 R E
7.1188425348e-15 R X
7.1188425348e-14 E X

-8.1866689150e-14 R Y
1.2635945499e-13 E Y

-9.0765242319e-14 X Y
1.6017395703e-14 R E X
2.4915948872e-14 R E Y
1.8508990590e-13 R X Y

-2.6695659506e-14 E X Y
displacement Sobol indices:

Main Total
3.0376298835e-13 -1.3978473800e-13 R
2.4260687756e-01 2.4452448915e-01 E
1.5243149082e-01 1.5378097334e-01 X
6.0208388530e-01 6.0457471845e-01 Y

Interaction
2.4193512347e-13 R E

-2.5537596366e-13 R X
3.8691316858e-04 E X

-8.0376224352e-13 R Y
1.5282637946e-03 E Y
9.6013473508e-04 X Y

-1.6666641839e-13 R E X
1.9623626681e-13 R E Y
3.4408550893e-13 R X Y
2.4346209458e-06 E X Y

Figure 6.3: Excerpt of UQ output for stochastic collocation.

CASL-U-2017-1445-000 84

−1 0 1 2 3 4 5
x 104

0

1

2

3

4

5

6

7x 10−5

Stress (psi)

PD
F

Sampling
PCE
Collocation

0 1 2 3 40

0.2

0.4

0.6

0.8

1

Displacement (in)

PD
F

(a) (b)

Figure 6.4: (a) Stress density constructed by random sampling and normal densities with mean
and variance (6.2) computed using coefficients αj determined by nonintrusive PCE and stochastic
collocation. (b) Displacement density constructed by random sampling.

computed using nonintrusive PCE or collocation coefficients since the nonlinear displacement de-
pendence on inputs yields a non-Gaussian output as demonstrated by the magnitude of the skewness
and kurtosis coefficients in Table 6.3. However, we could employ the nonintrusive PCE or colloca-
tion representations as surrogate models, which could subsequently be used with random sampling
to more efficiently construct the non-Gaussian displacement density.

The comparison in Figure 6.4(a), obtained by sampling, nonintrusive PCE, and stochastic col-
location provides a qualitative comparison of the methods. To quantify whether the probability
density functions correspond to the same distribution, we compute energy statistics as presented
in [51, 52]. We take the null hypothesis H0 to be the statement that the three PDF sample sets
are from the same distribution. We reject H0, at a 100(1 − α)% confidence level, if the p-value
computed using resampled replicates is less than α. We employed n = 1000 samples to compute
each PDF and M = 499 bootstrap samples. For these values the test statistic is T = 1.3 × 104

whereas the p-value is 0.7. Because this value is greater than α = 0.01, we do not reject the null
hypothesis that the PDF samples are from the same distribution.

6.2 Bayesian Model Calibration

We noted in the introduction to this chapter that uncertainty quantification is broadly comprised
of two steps: (i) quantification of uncertainties associated with models, inputs and experiments,
and (ii) propagation of these uncertainties through models to quantify uncertainties in responses or
quantities of interest. Here inputs refer to model parameters, initial conditions, boundary conditions
or exogenous forces. We discuss here techniques to calibrate inputs derived from closure, constitutive
or phenomenological relations for which values derived from fundamental principles are lacking.

The deterministic calibration techniques detailed in Chapter 5 provide point estimates for cali-
bration inputs, but generally no measure of uncertainty. An exception is gradient-based methods,
which produce asymptotic 95% confidence intervals for each input. The usefulness of these intervals
is tied to the validity of asymptotic assumptions applied to the problem at hand. As noted in the
introduction to this chapter, approaches such as Wilks’ formula employ uniform input distributions,
which are generally based on expert opinion. These intervals are often based on qualitative, rather
than quantitative, knowledge and hence they are typically conservative.

Bayesian inference provides a framework for probabilistic model calibration based on the assump-

CASL-U-2017-1445-000 85

tion that calibration inputs are random variables having associated PDFs. These PDFs quantify
both the support, or admissible parameter values, and the plausibility of each admissible parameter
value. In Bayesian model calibration, one employs a likelihood, which incorporates measured data
and computed model information, to update prior density information to obtain a more accurate
posterior parameter density, which is consistent with experimental uncertainties.

Input densities or bounds, constructed in this manner, are tighter and contain more information
than uniform densities constructed solely to bound potential input values. Propagation of these in-
put densities using the sampling, nonintrusive polynomial chaos expansions, or stochastic collocation
techniques of Section 6.1 will provide reduced response uncertainties and hence tighter robustness,
performance or safety margins. For example, these densities could be employed in Wilks’ formula
to construct tighter tolerance bounds than those obtained using conservative, non-inference based
input densities.

We summarize pertinent details required for implementation of the methods and refer readers
to [23, 47] for additional examples and details regarding the theory and algorithms.

6.2.1 Direct Implementation of Bayes’ Relation

To set notation, we consider a random calibration parameter vector Θ = [Θ1, . . . ,ΘM] with the
realization θ = [θ1, . . . , θM]. We consider the statistical model

Di = yi(Θ) + εi , i = 1, . . . , N (6.5)

where D = [D1, . . . , DN] denotes unobserved (random) data, y(Θ) = [y1(Θ), . . . , yN (Θ)] is the
parameter-dependent model, and ε = [ε1, . . . , εN] is a random vector, which represents experimental
and model errors. Throughout this discussion, we assume that εi are independently and identically
distributed (i.i.d.) and εi ∼ N (0, σ2) where the experimental error variance σ2 is determined exper-
imentally or estimated through the inference procedure. We note that the model may additionally
depend on spatial or temporal independent variables – e.g., yi = y(xi,Θ) or yi = y(ti,Θ) – but
we simplify notation by suppressing these latter dependencies since model calibration focuses on
uncertain parameters.

In Bayesian inference, one employs Bayes’ relation

π(θ|d) =
L(θ; d)π0(θ)∫

<M
L(θ; d)π0(θ)dθ

(6.6)

for observed data d to update a prior density π0(θ), using the likelihood L(θ; d), to obtain a more
informative posterior density π(θ|d).

Prior Density. The prior density π0(θ) incorporates any knowledge that one has about pa-
rameters prior to obtaining observations d. This could come from previous similar experiments or
analysis regarding similar models. If prior knowledge is of questionable accuracy, it is better to use
a noninformative prior, which is often taken as an improper uniform density posed on the parameter
support. For example, one would employ π0(θ) = χ(0,∞)(θ) for positive parameters, where χ(0,∞)(θ)
is the characteristic function having a value of 1 for θ ∈ (0,∞) and 0 for θ ∈ (−∞, 0]. In analyses
assuming random experimental error variance σ2, a standard noninformative prior for σ2 is the
Jeffreys prior π0(σ2) ∝ (1/σ2).

Likelihood Function. The likelihood L(θ; d) incorporates information provided by the samples
and model and constitutes the mechanism through which data informs the posterior density. The

CASL-U-2017-1445-000 86

likelihood can be interpreted as quantifying the probability of obtaining the observations d for a
given value θ of the parameter Θ. The likelihood can generally be written as

L(θ; d) = f [y(θ)− d]

where the function f can be constructed to emphasize specific relations between the model and data.
For the statistical model (6.5) with i.i.d. errors εi that are normally distributed, εi ∼ N (0, σ2), one
employs the likelihood relation

L(θ; d) =
N∏
i=1

1

σ
√

2π
e−(di−yi(θ))2/2σ2

=
1

(2πσ2)N/2
e−SSq/2σ

2

(6.7)

where

SSq =

N∑
i=1

[di − yi(θ)]2

denotes the sum of squares error. We note that the likelihood and prior density must be specified
by users when employing sampling-based Bayesian algorithms.

Posterior Density. For small parameter dimensionsM and fixed or estimated σ2, the posterior
density can be constructed by employing quadrature rules to approximate the denominator of (6.6).
If we let wi and ζi denote the quadrature weights and points and assume a noninformative prior,
the posterior can be approximated by

π(θ|d) ≈ 1∑Nq
i=1 e

−(SSζi−SSq)/2σ2

wi
. (6.8)

The algebraic reformulation of the sum of squares in the denominator is made to avoid numerical
0/0 errors. For M = 1 through roughly 4, one can employ tensored Gaussian quadrature relations
whereas sparse grid techniques can be employed for moderate dimensionality. We refer to this as
direct Bayesian calibration.

6.2.2 Sampling Based Metropolis Algorithms

The difficulties associated with approximating the denominator of (6.6) or constructing marginal
posterior densities, for moderate to large dimensional parameter spaces, can be partiality circum-
vented by employing Markov chain Monte Carlo (MCMC) techniques. The goal with these algo-
rithms is to construct sampling-based chains whose stationary distribution is the posterior distri-
bution. The capabilities currently provided in Dakota are: Delayed Rejection Adaptive Metropolis
(DRAM) (and variants) via the and QUESO (Quantification of Uncertainty for Estimation, Simu-
lation, and Optimization) library and DiffeRential Evolution Adaptive Metropolis (DREAM). An
additional capability, Gaussian Process Models for Simulation Analysis (GPMSA), is under devel-
opment in QUESO and will be deployed through a future Dakota release.

Delayed Rejection Adaptive Metropolis (DRAM)

In Metropolis algorithms, parameters are sampled using a proposal function that reflects, to
the degree possible, the geometry of the unknown posterior density. For example, one can propose
candidate samples θ∗ ∼ N (θk−1, V), where θk−1 is the previous chain element and V is the proposal

CASL-U-2017-1445-000 87

covariance matrix. Proposed candidates are rejected or accepted with a probability that reflects the
degree to which candidates increase the likelihood. The goal is to construct a chain whose stationary
distribution is the posterior density.

DRAM is a variation of the Metropolis algorithm whose robustness is improved in two ways.
First, adaptation allows the algorithm to update the proposal covariance matrix to reflect accepted
candidates. In this manner, information acquired about the posterior distribution through accepted
chain candidates is used to update the proposal distribution. Secondly, delayed rejection provides
a mechanism for efficiently constructing alternative candidates when the current candidate is re-
jected. In combination, these two mechanisms provide the algorithm with substantial robustness
and efficiency [18]. We note that parallel versions of DRAM have recently been developed [48].

DiffeRential Evolution Adaptive Metropolis (DREAM)

There are regimes in which DRAM algorithms are often inefficient. These include problems in
which posterior densities are multi-modal, highly complex, or have heavy tails. For these cases,
the single DRAM chain will be slow to traverse the posterior which can significantly diminish its
efficiency. Moreover, the computational overhead associated with complex models can preclude the
construction of burned-in single chains whereas one can often compute shorter parallel chains using
massively parallel architectures.

DREAM algorithms can circumvent some of these limitations. In these algorithms, candidates
are randomly generated using differential evolution algorithms. These algorithms are inherently
parallel and have the advantage that chains can learn from each other. Details are provided in
[56, 55].

Gaussian Process Models for Simulation Analysis (GPMSA)

GPMSA provides additional capability for Bayesian calibration. A key part of GPMSA is the
construction of a surrogate model or emulator from simulation runs collected at various settings of
input parameters; see Chapter 4 for details regarding the construction of surrogate models including
Gaussian process representations. The emulator is a statistical model of the system response, and
it is used to incorporate the observational data to improve system predictions and constrain or
calibrate the unknown parameters. The GPMSA code draws heavily on the theory developed in
the seminal Bayesian calibration paper by Kennedy and O’Hagan [27]. The particular approach
under development in QUESO is described in [22]. GPMSA uses Gaussian process models in the
emulation, but for functional responses the emulator is actually a set of basis functions (e.g., from
a singular value decomposition) which have GPs as the coefficients. One major difference between
GPMSA and the QUESO implementation in Dakota is that the QUESO implementation does not
have an explicit “discrepancy” function δ which models the difference between the simulation and
the observational data results in addition to the error term ε, but GPMSA has a sophisticated model
for the discrepancy term.

Table 6.4 provides a reference for choosing a Bayesian model calibration method based on the
properties of the model.

6.2.3 Model Calibration and Surrogate Models

Dakota provides various capabilities for combining Bayesian model calibration algorithms with sur-
rogate models. The first is to employ a surrogate model or emulator when constructing chains
and posterior densities for inputs. For computationally intense codes, this will be necessary to ac-
quire the 103 to 105 model solutions required to burn-in chains and obtain a statistically relevant

CASL-U-2017-1445-000 88

Table 6.4: Guidelines for Bayesian method selection.

Method Desired Problem Applicable Methods
Classification Characteristics

DRAM Unimodal or weakly multi-modal posterior bayes_calibration queso
densities; computationally efficient models

or surrogates
DREAM Multi-modal, complex or heavy tailed bayes_calibration dream

posterior densities; inherently parallel
simulation codes

GPMSA Bayesian calibration using a Gaussian n/a
process emulator; can accommodate certain

model discrepancy relations

number of chain elements. Upon completion, the QUESO GPMSA package will provide one alter-
native for Bayesian calibration using a Gaussian process emulator. Alternatively, the techniques of
Chapter 4 can be used to construct a surrogate model, which is then employed in Dakota-QUESO
DRAM or Dakota DREAM for Bayesian model calibration. One can apply Bayesian methods to
a general surrogate by using a model_pointer to point the Bayesian routine to a model of type
surrogate. For the nonintrusive PCE or stochastic collocation surrogates, discussed in Section 6.1,
or Gaussian process surrogates, one can shortcut this process by specifying the emulator as one of
gaussian_process, pce, etc.

Once input distributions have been constructed, one can employ a surrogate model to imple-
ment the sampling methods discussed in Section 6.1.1 for quantities of interest that may not have
been used for calibration. Alternatively, one can employ the stochastic polynomial methods of
Section 6.1.2 to propagate uncertainties. We note that these comprise a form of interpolation
or regression-based surrogate models, which complement the kriging and Gaussian process-based
methods detailed in Chapter 4.

6.2.4 Verification

We summarize here a general framework for verifying model calibration results for CASL codes
implemented in VERA via Dakota. This framework is generally applicable to codes with nonlinear
parameter dependencies and experimental or synthetic data.

(i) Test algorithms using a linearly-parameterized model where analytic uncertainty relations can
be computed. Whereas this is not generally possible for CASL codes with nonlinear parameter
dependencies, code verification in this manner provides a first step for verifying the capabilities
of the model calibration framework and it may be used in certain nearly linear operating
regimes.

(ii) Compare to direct numerical implementation of Bayes’ formula (6.6) for small to moderate
input or parameter dimensions M ; e.g., M ≤ 20 to 30. For the likelihood relation (6.7)
and a noninformative prior π0(θ), this involves the evaluation of the relation (6.8). This also
comprises code verification.

(iii) Compare to other packages that implement DRAM to perform code-to-code verification.

CASL-U-2017-1445-000 89

(iv) Compare DRAM and DREAM results. These comparisons can be quantified using the energy
statistics tests detailed in [51, 52].

(v) Compare to sampling distributions provided by frequentist analysis. Whereas this approach can
guide verification, is must be used with care since the underlying assumptions for frequentist
and Bayesian inference differ significantly; see Chapter 4 of [47]. For example, asymptotic
analysis often yields Gaussian sampling distributions which will obviously be inaccurate if the
true distribution is highly non-Gaussian.

(vi) Check the convergence of the algorithms by increasing the number of quadrature points used
in (6.8) or number of iterations in DRAM or DREAM chains to establish solution verification.

6.2.5 Synthetic Data

One often employs synthetic data when testing model calibration algorithms since it provides a
regime in which errors are constructed, and hence known, and it can be employed when experimental
data is not readily available. We illustrate the construction of synthetic data for the statistical model
(6.5) but note that the procedure may vary for other statistical models.

For a nominal input θ̃ = [θ̃1, . . . , θ̃M], one calculates a nominal model response y(θ̃). For a
specified variance σ2, one then generates realizations ε1, . . . , εN from a normal distribution N (0, σ2),
which yields the synthetic data

di = y(θ̃) + εi , i = 1, . . . , N.

For multiple responses, the standard deviation σ is typically scaled by the magnitude of each
response in the manner illustrated in the cantilever beam example of Section 6.2.6.

6.2.6 Bayesian Calibration Examples

We illustrate here the performance and verification of the Dakota Bayesian model calibration pack-
ages for the cantilever beam example of Section 6.2.4 and linear verification example of Section 2.2
and Appendix A. The use of the algorithms for COBRA-TF is illustrated in Section 7.3.

Cantilever Beam

We employ the cantilever beam example of Section 2.1 to illustrate the implementation of the
DRAM and DREAM algorithms for Bayesian model calibration along with the verification frame-
work summarized in Section 6.2.4. The posterior parameter densities constructed in this manner
can subsequently be employed with the uncertainty propagation techniques detailed in Section 6.1
to quantify response uncertainties.

Case I. We consider first the case in which the Young’s modulus E and width w are considered
unknown, the remaining parameters and inputs t, R, L,D0, X and Y are assumed known and fixed,
and data are taken to be displacement and stress measurements d and s. To construct synthetic
data using the techniques of Section 6.2.5, based on the assumption of independent and identically
distributed (i.i.d.) observation errors εi ∼ N (0, σ2), we compute the nominal displacement and
stress values

d̃ = 0.3086 , s̃ = 2.6667× 103

using the fixed and nominal input values in Table 6.5. The standard deviations are taken to be

σd = 0.1 · d̃ , σs = 0.1 · s̃

CASL-U-2017-1445-000 90

t R L D0 X Y Ẽ w̃

3 4× 104 100 2.2535 500 100 2.85× 107 2.5

Table 6.5: Known values for t, R, L,D0, X, Y and nominal values Ẽ and w̃.

d (×10−1) 3.2075 2.7005 2.7939 2.8578 2.9298 2.9875 3.0903 2.1515 2.9454 3.4700
s (×103) 2.3829 3.0943 2.9959 2.6054 2.2650 2.5481 2.6251 2.7403 2.5970 2.7849

Table 6.6: Synthetic displacement and stress data employed for Bayesian model calibration.

which yields the synthetic data compiled in Table 6.6 when observation errors εdi and εsi are drawn
from normal distributions N (0, σ2

d) and N (0, σ2
s).

We first employ the discretized Bayes relation (6.8) to directly construct marginal posterior
densities for E and w. Due to the simplicity of the algebraic model, we employ a tensored trapezoid
quadrature rule, which yields the convergence results compiled in Table 6.7. For more computation-
ally intensive models and codes, one would employ tensored Gaussian routines for low parameter
dimensions for M = 1 to approximately 6 and sparse grid techniques for moderate dimensionality
of M up to 30 or 40 where the upper limit depends on the regularity of the likelihood.

The direct results are compared with posterior densities constructed using the Dakota-QUESO
DRAM and Dakota DREAM algorithms in Figure 6.5. The corresponding input decks are provided
in Listings 6.4 and 6.5. The file dakota_cant_withsigma.dat contains the calibration data of
Table 6.6 along with nominal observation error variances corresponding to each observation. Each
row represents an individual experiment, and the associated observations are placed in the first set
of columns followed by the nominal variances in the same order. The posterior means and standard
deviations are compiled in Table 6.8. The joint sample points plotted in Figure 6.6 demonstrate
that E and w are correlated but identifiable. For the DRAM algorithm, we constructed a chain of
length 60,000 and saved the last 50,000 elements to ensure burn-in. For DREAM, we employed 10
chains of length 6,000 and employed the last 5000 entries when computing statistics and marginal

Nq µE σE µw σw

40 2.8751e+07 2.6685e+05 2.5024 1.2589e-02
80 2.8688e+07 1.6430e+05 2.5004 6.3164e-03
160 2.8693e+07 1.3087e+05 2.5001 3.6669e-03
320 2.8693e+07 1.3011e+05 2.5001 3.5940e-03

Table 6.7: Convergence of the direct numerical Bayes relation.

µE σE µw σw

Direct 2.8693e+07 1.3011e+05 2.5001 3.5940e-03
DRAM 2.8693e+07 1.2911e+05 2.5001 3.5699e-03
DREAM 2.8692e+07 1.2945e+05 2.5001 3.5994e-03

Table 6.8: Posterior means and standard deviations provided by the direct, DRAM and DREAM
algorithms.

CASL-U-2017-1445-000 91

2.82 2.84 2.86 2.88 2.9 2.92
Stiffness ×107

0

0.5

1

1.5

2

2.5

3

3.5 ×10-6

Direct
DRAM
DREAM

2.485 2.49 2.495 2.5 2.505 2.51 2.515
Width

0

20

40

60

80

100

120
Direct
DRAM
DREAM

(a) (b)

Figure 6.5: Marginal posterior densities for (a) E and (b) w generated through direct solution of
Bayes’ relation (6.8), Dakota-QUESO DRAM and Dakota DREAM.

and joint densities. In both cases, we employed noninformative priors.
From Figure 6.5, we note that the direct, DRAM and DREAM results match very closely for the

stiffness E. The width plot demonstrates that in some cases, the marginal density computed using
DREAM can differ slightly from that computed using DRAM. This is a very qualitative comparison
since kernel density estimates (KDE), used to compute the marginal densities from the sampled
chains, have a smoothing effect on the distribution. We note that the DREAM chains also exhibit
some variability for different seed values.

To quantify the comparison between the DRAM and DREAM chains, we employ the energy
statistics detailed in [51, 52] and illustrated in Section 6.1. Here the null hypothesis H0 is that
DRAM and DREAM are sampling from the same distribution. We thinned the chains to n = 5000
to ensure that the samples are uncorrelated and employedM = 499 resampled replicates to compute
p-values. We first tested the chains for E and w individually. In this case, the p-value for E is
0.024 whereas it is 0.142 for w. Because both p-values are greater than α = 0.01, this supports
the conclusion that the DRAM and DREAM samples for E and w are from the same distributions.
We then computed a p-value of 0.022 for the joint samples E and w. For this case, we again have
insufficient evidence to reject the null hypothesis H0.

To apply energy statistics to the direct method, one could construct a spline representation,
based on the computed posterior values, and sample from this representation. Due to the very close
qualitative comparisons with the DRAM marginal distributions, we do not illustrate this method
for quantitatively comparing sampled-based methods to the direct implementation.

In summary, we recommend that, when possible, at least two of the techniques be compared to
verify the accuracy of the inference procedure.

Case II. Secondly, we consider the case when E, t and w are considered uncertain and synthetic
data is taken to be displacement, stress and area measurements generated in a manner analogous to
Case I. The joint sample points constructed using Dakota-QUESO DRAM are plotted in Figure 6.7.
The nearly single-valued relation between t and w indicates that these parameters are essentially
nonidentifiable, which is a manifestation of nonunique input-output maps. This is consistent with
the observation that the product A = w · t appears in the displacement, stress and area relations.

CASL-U-2017-1445-000 92

Listing 6.4: Input for Dakota-QUESO DRAM.
DAKOTA INPUT FILE - cantilever_bayes_dram.in

2

method
4 bayes_calibration queso

logit_transform
6 dram

proposal_covariance prior
8 chain_samples = 60000

seed = 348
10 export_chain_points_file = ’cant_dram.txt ’

12 variables
uniform_uncertain 2

14 initial_point 2.85e7 2.5
upper_bounds 1.e8 10.0

16 lower_bounds 1.e6 0.1
descriptors ’E’ ’w’

18 continuous_state 4
initial_state 3 40000 500 1000

20 descriptors ’t’ ’R’ ’X’ ’Y’

22 interface
system

24 analysis_driver = ’mod_cantilever ’

26 responses
calibration_terms = 2

28 descriptors = ’stress ’ ’displacement ’
calibration_data_file = ’dakota_cant_withsigma.dat ’ freeform

30 num_experiments = 10
variance_type = ’scalar ’

32

no_gradients
34 no_hessians

CASL-U-2017-1445-000 93

Listing 6.5: Input for Dakota DREAM.
DAKOTA INPUT FILE - cantilever_bayes_dream.in

2

method
4 bayes_calibration dream

chain_samples = 60000
6 chains = 10

seed = 348
8 export_chain_points_file = ’cant_dream.txt ’

10 variables
uniform_uncertain 2

12 initial_point 2.85e7 2.5
upper_bounds 1.e8 10.0

14 lower_bounds 1.e6 0.1
descriptors ’E’ ’w’

16 continuous_state 4
initial_state 3 40000 500 1000

18 descriptors ’t’ ’R’ ’X’ ’Y’

20 interface
system

22 analysis_driver = ’mod_cantilever ’

24 responses
calibration_terms = 2

26 descriptors = ’stress ’ ’displacement ’
calibration_data_file = ’dakota_cant_withsigma.dat ’ freeform

28 num_experiments = 10
variance_type = ’scalar ’

30

no_gradients
32 no_hessians

CASL-U-2017-1445-000 94

2.82 2.84 2.86 2.88 2.9 2.92
Stiffness ×107

2.48

2.485

2.49

2.495

2.5

2.505

2.51

2.515

2.52

W
id
th

Figure 6.6: Joint posterior sample points for E and w constructed using the direct method (contours)
and DRAM (points).

We note that for this example, DREAM more accurately quantifies the nearly single-valued relation
between E and w and E and t as compared with DRAM. The implementation of Bayesian calibration
techniques for nonidentifiable parameter sets will generally be problematic unless informative prior
specification is provided. If such prior information is not available, parameter selection based on
global sensitivity analysis or reduced order modeling techniques should be employed to determine
the set of identifiable or influential parameters. Details regarding parameter selection techniques
can be found in Chapter 6 of [47].

2.5 3 3.5 4
Width

1.5

2

2.5

3

3.5

Th
ic
kn
es
s

2.5 3 3.5 4
Width

2.8

3

3.2

3.4

3.6

St
iff
ne
ss

×107

1.5 2 2.5 3 3.5
Width

2.8

3

3.2

3.4

3.6

St
iff
ne
ss

×107

Figure 6.7: Joint posterior sample points for E,w and t using DRAM (o) and DREAM (∗).

CASL-U-2017-1445-000 95

General Linear Model Verification Tests

We illustrate here aspects of the general linear model verification test suite described in Chapter 2
and Appendix A. This constitutes step (i) in the verification framework detailed in Section 6.2.4.
All results were obtained using the QUESO implementation of DRAM within Dakota. The input
files mentioned in this subsection can be found in examples/LinearModel.

Three examples of QUESO DRAM verification are examined. The first two demonstrate Case 2
scenarios with the “no correlation" and “AR(1) correlation" specifications, respectively. The third
represents Case 1 with the AR(1) correlation model.

A simple linear regression model, g(x) = (1, x1, x2, . . . , xM)T , is specified for the three verifica-
tion examples treated in this section. The dimension of β is therefore Nβ = M + 1. Our examples
assumeM = 2 covariate dimensions and therefore Nβ = 3. For the purpose of generating calibration
data using the process described in Appendix A.1, the nominal regression parameter vector β0 was
set to (0.2,−0.3, 0.1), and the nominal precision (inverse variance) λ0 and correlation parameter φ0

in the AR(1) correlation model were set to 400 and 0.8, respectively. The regression matrix G used
by all three examples is given as follows,

G =

1 −1.3134 −0.230852

1 0.865439 −0.708232

1 −1.24733 0.443547

1 0.598521 −1.47469

1 −1.22409 −0.347091

 ,

which is contained in the file g.in.
Data of sample size N = 5 were generated via (2.4) as described in Appendix A.1. The largest

number of unknown parameters, Nβ + 1 = 4 encountered in the Case 2 examples, is therefore
exceeded by the amount of available data. Data generated for the “no correlation" and “AR(1)
correlation" specifications are provided in Table 6.9.

Table 6.9: Calibration data for the “no correlation" and “AR(1) correlation" specifications.
No correlation AR(1) correlation

0.597953 0.553559

−0.123317 −0.178668

0.556432 0.602756

−0.178478 −0.149112

0.541521 0.540218

Both Case 2 examples assume the noninformative prior for β and the Gamma prior for λ with
a = 64 and b = 4/25. In the AR(1) correlation scenarios, φ0 is fixed at 0.8 in the calibration
analysis. The Case 1 example adopts the informative prior for β having µ0 = 03, λ0 = 400, and
Σ = 0.25 ∗ I3 for 0Nβ the Nβ × 1 vector of zeros and INβ the Nβ ×Nβ identity matrix.

Example 1. We first illustrate Case 2 with data generated under the “no correlation" speci-
fication. Listing 6.6 shows the Dakota input file used to generate DRAM samples from the joint
posterior distribution of the regression and variance parameters.

There are several notable features in Listing 6.6. Line 7 of the input file indicates that 260,000
iterations (accepted chain samples) of DRAM are conducted. In the analysis of results, the first

CASL-U-2017-1445-000 96

Listing 6.6: Input for the first stochastic verification example.
environment

2 tabular_data
tabular_data_file = ’verif1_cal_tabular.dat ’

4

method
6 bayes_calibration queso

chain_samples = 260000
8 seed = 503

logit_transform
10 export_chain_points_file = ’verif1_cal_mcmc.dat ’

dram
12 proposal_covariance

diagonal values 1. 1. 1.
14 calibrate_error_multipliers one

hyperprior_alphas = 64
16 hyperprior_betas = 64

output verbose
18

variables
20 uniform_uncertain 3

initial_point 0. 0. 0.
22 upper_bounds 100. 100. 100.

lower_bounds -100. -100. -100.
24 descriptors ’q1’ ’q2 ’ ’q3’

26 interface
fork

28 analysis_driver = ’simulator_script ’
work_directory named ’workdir ’

30 directory_tag
file_save

32 copy_files = ’lm.template ’ ’g.in’
parameters_file = ’params.in ’

34 results_file = ’results.out ’

36 responses
calibration_terms = 5

38 calibration_data_file ’y_1.dat ’ freeform
num_experiments = 1

40 variance_type = ’scalar ’

42 no_gradients
no_hessians

CASL-U-2017-1445-000 97

10,000 DRAM samples were discarded as burn-in, and the remaining 250,000 samples were thinned
by taking every 25th sample, resulting in a total of 10,000 samples used. This ensured that the
samples ultimately used for verification purposes were approximately uncorrelated as required by
the adopted statistical methods. In line 9, the logit_transform option transforms all bounded
parameters to an unbounded domain for the purpose of facilitating the generation of legitimate
proposals in the DRAM algorithm.

Line 20 of the input file specifies the prior distribution of the regression parameters β as inde-
pendently uniform. Dakota does not currently allow specification of the flat noninformative prior
for β, so this is approximately accomplished by specifying uniform distributions on domains much
wider than the anticipated ranges of values for these parameters, as done in lines 22 and 23 here.

Line 40 of the input file instructs Dakota to adopt the ’scalar’ structure for the variance of
the j-th response in the i-th experiment σ2

ij ,

σ2
ij = mijσ

2
n,ij ,

where the multipliers mij are independent random variables assigned Inverse Gamma prior dis-
tributions and the nominal variances σ2

n,ij are provided in the input data file y_1.dat (Line 38).
Line 14 further restricts this specification to a common multiplier mij = m across experiments and
responses. In this example, since data from only one experiment is available, the variance of the
j-th response is therefore given by

σ2
j = mσ2

n,j ,

where the multiplier m is a random variable assigned an Inverse Gamma prior distribution. The
format of the input data file requires one row per experiment and one column per response, with
optional additional columns containing the nominal variances {σ2

n,ij} of each response. In this ex-
ample, y_1.dat therefore contains one row with the first five columns giving the observed responses
(first column of Table 6.9) and the second five columns giving the nominal variances of each response,
where σ2

n,j = 0.0025 = 1/λ0 for j = 1, 2, . . . , 5. In other words, a common variance σ2 = mσ2
n with

σ2
n = 0.0025 is assumed across all responses here.
Lines 15 and 16 of the input file specify hyperparameter values for the shape (hyperprior_alphas)

and rate (hyperprior_betas) parameters of the Inverse Gamma prior distribution for m, namely
64 and 64, respectively. Note that this variance specification is equivalent to the common precision
λ = 1/σ2 of Appendix A having a Gamma prior distribution with a = 64 and b = 4/25, as indicated
earlier in the introduction.

Lines 12 and 13 of the input file instruct Dakota to adopt specified values for the diagonal entries
of the initial covariance matrix used in the Gaussian proposal density of the DRAM algorithm. Nor-
mally these can be adopted from the prior specification of the β parameters in the variables block,
but this default was overridden here as the noninformative nature of the β prior in this example
renders a proposal covariance matrix that is “too large," negatively impacting the performance of
the DRAM algorithm.

The interface block of the input file instructs Dakota to run simulator_script to generate
model output. This shell script first calls dprepro, a Perl program distributed with Dakota that
sets up an input deck for each run by replacing tags in the templated input deck lm.template with
the actual parameter values utilized. The next step is to run the code providing the input to output
map, in this case a Python program called lm.py supplied by the user. Finally the output of this
run is postprocessed into the results needed for Dakota consumption.

Figure 6.8 presents comparisons of the marginal posterior densities for the three regression
parameters and the precision sampled via DRAM with the analytical solution derived from Ap-
pendix A.1. In all cases, a kernel density estimator using a Gaussian kernel is used to approximate

CASL-U-2017-1445-000 98

the marginal posterior densities from the DRAM samples. It is observed visually that the DRAM
algorithm implemented in QUESO produces marginal posterior distributions that closely match
analytical results. This is confirmed by conducting the energy test of Appendix A.3, which seeks
evidence against the hypothesis that QUESO DRAM is sampling from a distribution equal to the
analytical posterior distribution. Sample sets of size 100 from both distributions were used to con-
duct the test, which produced a p-value of 0.661 suggesting insufficient evidence against the desired
outcome of equal joint distributions. The 100 QUESO DRAM samples were obtained by taking
every 100th sample from the thinned set of 10,000 samples described previously.

0.0 0.1 0.2 0.3

0
2

4
6

8

β0

de
ns

ity

−0.45 −0.35 −0.25 −0.15

0
2

4
6

8
10

β1

de
ns

ity

−0.1 0.0 0.1 0.2 0.3

0
1

2
3

4
5

6
7

β2

de
ns

ity

300 400 500 600

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

λ

de
ns

ity

Figure 6.8: Marginal posterior distributions of regression parameters β and error precision λ
computed from DRAM samples (solid blue) and analytical results (dashed red).

Example 2. We next illustrate Case 2 with data generated under the “AR(1) correlation"
specification. Listing 6.7 shows the Dakota input file used to generate DRAM samples from the
joint posterior distribution of the regression and variance parameters.

This example is very similar to the first example, with the main difference being the covariance
specification. In particular, the first example assumes the individual responses are mutually inde-
pendently distributed, while this example assumes they are correlated. Line 43 of the input file
instructs Dakota to adopt the ’matrix’ structure for the covariance Σi of the responses associated

CASL-U-2017-1445-000 99

Listing 6.7: Input for the second stochastic verification example.
1 environment

tabular_data
3 tabular_data_file = ’verif2_cal_tabular.dat ’

5 method
bayes_calibration queso

7 chain_samples = 260000
seed = 603

9 logit_transform
export_chain_points_file = ’verif2_cal_mcmc.dat ’

11 dram
proposal_covariance

13 diagonal values 1. 1. 1.
calibrate_error_multipliers one

15 hyperprior_alphas = 64
hyperprior_betas = 64

17 output verbose

19 variables
uniform_uncertain 3

21 initial_point 0. 0. 0.
upper_bounds 100. 100. 100.

23 lower_bounds -100. -100. -100.
descriptors ’q1’ ’q2 ’ ’q3’

25

interface
27 fork

analysis_driver = ’simulator_script ’
29 work_directory named ’workdir ’

directory_tag
31 file_save

copy_files = ’lm.template ’ ’g.in’
33 parameters_file = ’params.in ’

results_file = ’results.out ’
35

responses
37 descriptors ’y_2 ’

calibration_terms = 1
39 field_calibration_terms = 1

lengths = 5
41 calibration_data

num_experiments = 1
43 variance_type = ’matrix ’

45 no_gradients
no_hessians

CASL-U-2017-1445-000 100

with the i-th experiment,
Σi = miΣn,i ,

where the multipliers mi are independent random variables assigned Inverse Gamma prior distribu-
tions and the nominal covariance matrices Σn,i are input to Dakota from files having the following
nomenclature: <descriptor>.i.sigma. Here, the descriptors are identified in line 37 of the in-
put file, while the i indicates the experiment number. As before, line 14 further restricts this
specification to a common multiplier mi = m across experiments,

Σi = mΣn,i ,

where the multiplier m is a random variable assigned an Inverse Gamma prior distribution. In this
example, as indicated on line 42 there is only one experiment which consists of five responses (Line
40). Therefore, the nominal covariance matrix Σn,1 must be input from the file y_2.1.sigma, given
by

0.0025 0.002 0.0016 0.00128 0.001024
0.002 0.0025 0.002 0.0016 0.00128
0.0016 0.002 0.0025 0.002 0.0016
0.00128 0.0016 0.002 0.0025 0.002
0.001024 0.00128 0.0016 0.002 0.0025

which must have dimensions conforming to the number of responses corresponding to the associated
experiment (5 × 5). The matrix Σn,1 above was constructed from the AR(1) correlation function
described in Appendix A.2 using φ0 = 0.8, followed by scaling to obtain a nominal marginal variance
of 0.0025 = 1/λ0 for each of the five responses as in the previous example.

The data are input to Dakota as column vectors from files having the following nomenclature:
<descriptor>.i.dat. In this example, the second column of Table 6.9 must be saved to the file
y_2.1.dat (absent any column header) prior to running Dakota.

Figure 6.9 presents comparisons of the marginal posterior densities for the three regression
parameters and the precision sampled via DRAM with the analytical solution derived from Ap-
pendix A.1. As in the previous example, it is observed visually that the DRAM algorithm imple-
mented in QUESO produces marginal posterior distributions that closely match analytical results.
This is confirmed by the energy test, which produced a p-value of 0.503 supporting the conclusion
of equal joint distributions.

It is not yet possible to work with covariance structures in Dakota having a more complicated
parameterization than that considered above (for example, Σn,i = R(φi) with R(·) having the AR(1)
structure of Appendix A.2 and φi random is not currently permitted).

Example 3. We conclude by illustrating Case 1 with data generated under the “AR(1) corre-
lation" specification. Listing 6.8 shows the Dakota input file used to generate DRAM samples from
the joint posterior distribution of the regression parameters.

This example adapts the previous example by assuming an informative prior for the regression
parameters β and by fixing the multiplier in the covariance structure to be m = 1. The variables
block starting on line 16 of the input file specifies a Gaussian prior distribution for β having means
0, variances 0.01, and no pairwise correlation among the elements of β. The nominal covariance
matrix of the responses y_2.1.sigma is carried over from the previous example, as is the data vector
y_2.1.dat. The fixed multiplier m = 1 is specified by simply removing the block

calibrate_error_multipliers one
hyperprior_alphas = 64
hyperprior_betas = 64

CASL-U-2017-1445-000 101

Listing 6.8: Input for the third stochastic verification example.
environment

2 tabular_data
tabular_data_file = ’verif3_cal_tabular.dat ’

4

method
6 bayes_calibration queso

chain_samples = 260000
8 seed = 703

logit_transform
10 export_chain_points_file = ’verif3_cal_mcmc.dat ’

dram
12 proposal_covariance

diagonal values 1. 1. 1.
14 output verbose

16 variables
normal_uncertain 3

18 initial_point 0. 0. 0.
means 0. 0. 0.

20 std_deviations 0.1 0.1 0.1
descriptors ’q1’ ’q2 ’ ’q3’

22

interface
24 fork

analysis_driver = ’simulator_script ’
26 work_directory named ’workdir ’

directory_tag
28 file_save

copy_files = ’lm.template ’ ’g.in’
30 parameters_file = ’params.in ’

results_file = ’results.out ’
32

responses
34 descriptors ’y_2 ’

calibration_terms = 1
36 field_calibration_terms = 1

lengths = 5
38 calibration_data

num_experiments = 1
40 variance_type = ’matrix ’

42 no_gradients
no_hessians

CASL-U-2017-1445-000 102

0.0 0.1 0.2 0.3

0
2

4
6

8

β0

de
ns

ity

−0.40 −0.35 −0.30 −0.25

0
5

10
15

20

β1

de
ns

ity

0.00 0.05 0.10 0.15 0.20

0
5

10
15

β2

de
ns

ity

300 400 500 600

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

λ

de
ns

ity

Figure 6.9: Marginal posterior distributions of regression parameters β and error precision λ
computed from DRAM samples (solid blue) and analytical results (dashed red).

from Listing 6.7.
Figure 6.10 presents comparisons of the marginal posterior densities for the three regression

parameters sampled via DRAM with the analytical solution derived from Appendix A.1. As in
the previous examples, it is observed visually that the DRAM algorithm implemented in QUESO
produces marginal posterior distributions that closely match analytical results. The energy test
again confirms this result, as the p-value of 0.455 supports the conclusion of equal joint distributions.

Dakota does not currently facilitate the informative joint prior distribution for (β, λ) adopted by
Case 2 in Appendix A.1. Hence, verification of informative prior specifications for β must currently
be conducted under Case 1.

CASL-U-2017-1445-000 103

0.0 0.1 0.2 0.3

0
2

4
6

8

β0

de
ns

ity

−0.38 −0.34 −0.30 −0.26

0
5

10
15

20

β1

de
ns

ity

0.00 0.05 0.10 0.15 0.20

0
5

10
15

β2

de
ns

ity

Figure 6.10: Marginal posterior distributions of regression parameters β computed from DRAM
samples (solid blue) and analytical results (dashed red).

CASL-U-2017-1445-000 104

Chapter 7

COBRA-TF VUQ Studies

This chapter demonstrates the use of Dakota to complete an overall VUQ process for CASL Pro-
gression Problem 6, simulated with COBRA-TF, as described in Section 2.3. The workflow demon-
stration includes the following Dakota studies:

1. Initial centered parameter studies to exercise the COBRA-TF model with two coupled
physics scenarios and verify the Dakota/COBRA-TF interfaces, resulting in adding and re-
moving some parameters from the admissible set. (Section 7.1)

2. Sensitivity analysis using parameter study, LHS and Morris methods to identify the most
important of 33 parameters. Initial LHS studies revealed code robustness issues under joint
variation, resulting in adjusting the range of one parameter. Screening based on these studies
resulted in three significant parameters. Another LHS study with 30 samples was conducted
over these parameters and used in subsequent activities. (Section 7.2)

3. Deterministic and Bayesian calibration to estimate the values or distributions of the
three significant parameters using synthetic data. The deterministic calibration demonstrates
gradient-based local calibration using the COBRA-TF simulation model directly, while the
Bayesian calibration uses a surrogate model constructed from the 50 LHS samples. (Sec-
tion 7.3)

4. Surrogate construction and validation to assess the quality and applicability of a response
surface model. (Section 7.3.2)

The total Progression Problem 6 parameter set for consideration is indicated in Table 2.6 in
Section 2.3. The two parameters marked with an asterisk in this table, ql and qv, were initially
included to assess the effects of heat transfer across the fuel pin surface into the channel liquid and
vapor phases, respectively. However, it was quickly discovered that for the steady-state Progression
Problem 6, perturbing either of these produces an inherent thermal imbalance precluding any steady
thermal behavior. Accordingly, these parameters were excluded from the following studies. For all
studies in this chapter, the total pressure drop through the fuel rod assembly (here indicated by
TotalPressure) was used as the quantity of interest.

7.1 Initial Parameter Studies with Two Power Distributions

Two initial centered parameter studies were conducted to verify the Dakota/COBRA-TF interface,
assess code robustness, and generate initial results. Both employed a Dakota centered parameter

CASL-U-2017-1445-000 105

study (Section 3.2.1) over 33 parameters for which the shift values were zero; e.g. kap = 0, and
the scaling values were allowed to vary by ±5% around unity; e.g. kp = 1.0± 5% in increments of
1%. The two studies differ in the power distribution input to the thermal hydraulics code. The first
uses a uniform value specified via input, while the second uses an axially varying power distribu-
tion representing a converged steady-state solution from a previous full simulation of Progression
Problem 6. A spatially-varying power distribution is provided by a file, “ss_power.txt," which if
present in the run directory gets used instead of the uniform power specification. The second study
represents a parameter sensitivity study performed around the actual solution to the neutronics
component of the problem.

The initial centered parameter studies each involve 33 parameters evaluated at 10 pertubed val-
ues in addition to the baseline (nominal) evaluation. This amounts to 331 total runs for each study.
Dakota provides a concurrent execution facility, which for these studies, enables 60 independent
runs to execute simultaneously on the the CASL fissile machines (e.g. james007, boris natasha
or anasova). Each run requires between 5 and 7 minutes so that each centered parameter study
completes in just under 1 hour assuming available capacity on the machine.

Table 7.1 summarizes the results for the uniform power distribution, and Table 7.2 summarizes
results for the spatially varying power distribution. All values are reported as percentages of the
difference in total pressure drop across the fuel assembly compared to each respective baseline
value representing unperturbed parameter values. The difference in the baseline values can be
considered as a measure of the sensitivity of total pressure drop to the spatial power distribution.
All parameters were perturbed in the same manner; e.g., the scaling coefficient was adjusted -5%
to +5% in increments of 1%. These initial results demonstrate the iterative exploratory process of
conducting Dakota studies on models, so detailed discussion is omitted. The results in the remainder
of this chapter are based on a spatially uniform power distribution.

7.2 COBRA-TF Sensitivity Studies

Initial studies reduced the admissible parameter set to 33 key parameters, for which the VUQ process
is demonstrated in this section. The first step in sensitivity analysis is to perform a centered
parameter study to assess the effect of individual parameters on the simulation response. Then
we conduct Dakota analyses that jointly vary the parameters to better assess global sensitvities
for complex models. The Latin hypercube and Morris methods complement the parameter study
results to screen the parameter set.

7.2.1 Centered Parameter Study

Dakota Input: A Dakota input file dakota_centered_33.in for a 33 variable centered parameter
study is shown in Listing 7.1. The method section (line 5) prescribes the study with five each
positive and negative parameter steps of 0.01. The 33 COBRA-TF parameters are specified in the
variables section, with an initial_point of 1.0 (lines 17-21), indicating nominal input values for
the simulation. The interface (line 30) specifies use of the dakota-vera-analysis driver (line 34),
which implements the Dakota/COBRA-TF interface descibed in Appendix B. This analysis workflow
accepts values of the 33 parameters from Dakota, runs the simulation, and extracts the desired
response metric, TotalPressure. Dakota’s work_directory feature (line 40) will cloister each
COBRA-TF simulation in a separate working directory to permit concurrent model evaluations.

Results and Discussion: Figure 7.1 displays data from the Dakota-generated tabular data file
dakota_centered_33.dat, revealing the univariate effects of each parameter on the TotalPressure
response. The parameters k_cd, k_xkwlx and to a lesser degree k_rodqq have significant effect, and

CASL-U-2017-1445-000 106

Table 7.1: Percent difference of total pressure drop compared to the baseline value of 1.17231 bar
using uniform power distribution input to the COBRA-TF thermal hydraulics code.

percent perturbation in parameter
parameter −5% −4% −3% −2% −1% +1% +2% +3% +4% +5%

cd −2.02 −1.62 −1.21 −0.81 −0.4 0.41 0.81 1.21 1.62 2.02
cdfb 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
cond 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
eta 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
gama 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
qliht 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
qradd 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
qradv 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
qvapl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
rodqq −0.26 −0.21 −0.16 −0.11 −0.05 0.05 0.11 0.16 0.22 0.27
sdent 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
sent 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
sphts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
tmasg 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
tmasl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
tmasv 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
tmome 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
tmoml 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
tmomv 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
tnrgl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
tnrgv 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
wkr 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
xk 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
xkes 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
xkge 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
xkl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
xkle 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
xkvls 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
xkwew 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
xkwlw 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
xkwlx −3.83 −3.07 −2.3 −1.53 −0.77 0.77 1.53 2.3 3.07 3.83
xkwvw 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
xkwvx 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

there is a strong linear relationship between each of them and TotalPressure. The parameter
k_tmoml induces a small change in the response, and the remainder of the parameters have zero
effect. These sensitivity results make physical sense based on assessment of the test problem. The
total pressure drop should depend strongly on the loss coefficient (k_cd) and wall friction (k_xkwlx)
in the dominant flow direction, with a minor dependency on the turbulent mixing between channels

CASL-U-2017-1445-000 107

(k_tmoml). The dependence on the externally supplied heat rate (k_rodqq) indicates the possibility
of boiling, but this has not been explored in depth.

Table 7.2: Percent difference of total pressure drop compared to the baseline value of 1.17561
bar using a power distribution from a previous steady-state neutronics solution to Progression
Problem 6.

percent perturbation in parameter
parameter −5% −4% −3% −2% −1% +1% +2% +3% +4% +5%

cd −2.03 −1.62 −1.22 −0.81 −0.41 0.41 0.81 1.22 1.62 2.03
cdfb 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
cond 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
eta 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
gama 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
qliht 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
qradd 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
qradv 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
qvapl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
rodqq −0.28 −0.23 −0.17 −0.11 −0.06 0.06 0.12 0.17 0.23 0.29
sdent 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
sent 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
sphts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
tmasg 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
tmasl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
tmasv 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
tmome 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
tmoml 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
tmomv 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
tnrgl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
tnrgv 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
wkr 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
xk 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
xkes 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
xkge 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
xkl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
xkle 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
xkvls 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
xkwew 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
xkwlw 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
xkwlx −3.84 −3.07 −2.31 −1.54 −0.77 0.77 1.54 2.3 3.07 3.84
xkwvw 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
xkwvx 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CASL-U-2017-1445-000 108

Listing 7.1: Dakota input file for centered parameter study, with ±5% variation in each of 33
parameters.

1 environment
tabular_graphics_data

3 tabular_graphics_file ’dakota_centered_33.dat ’

5 method
11 total evaluations over range [0.95 ,1.05]

7 centered_parameter_study
step_vector 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

9 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

11 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01

13 steps_per_variable 5

15 variables
continuous_design 33

17 initial_point 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

19 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

21 1.0
descriptors ’k_eta ’ ’k_gama ’ ’k_sent ’ ’k_sdent ’ ’k_tmasv ’

23 ’k_tmasl ’ ’k_tmasg ’ ’k_tmomv ’ ’k_tmome ’
’k_tmoml ’ ’k_xk ’ ’k_xkes ’ ’k_xkge ’ ’k_xkl ’

25 ’k_xkle ’ ’k_xkvls ’ ’k_xkwvw ’ ’k_xkwlw ’ ’k_xkwew ’
’k_qvapl ’ ’k_tnrgv ’ ’k_tnrgl ’ ’k_rodqq ’ ’k_qradd ’

27 ’k_qradv ’ ’k_qliht ’ ’k_sphts ’ ’k_cond ’ ’k_xkwvx ’
’k_xkwlx ’ ’k_cd ’ ’k_cdfb ’ ’k_wkr ’

29

interface
31 fork

asynchronous
33 evaluation_concurrency = 24

analysis_driver = ’dakota -vera -analysis ’
35 # extract TotalPressure metric (length 1)

analysis_components = ’TotPress ’
37 parameters_file = ’params.in ’

results_file = ’results.out ’
39 failure_capture recover NaN

work_directory
41 directory_tag

named ’workdir ’
43 file_save directory_save

45 responses
num_response_functions = 1

47 descriptors
’TotalPressure ’

49 no_gradients
no_hessians

CASL-U-2017-1445-000 109

k
eta

0.95 1 1.05T
ot

al
P

re
ss

ur
e

1

2

k
gama

0.95 1 1.05

1

2

k
sent

0.95 1 1.05

1

2

k
sdent

0.95 1 1.05

1

2

k
tmasv

0.95 1 1.05

1

2

k
tmasl

0.95 1 1.05T
ot

al
P

re
ss

ur
e

1

2

k
tmasg

0.95 1 1.05

1

2

k
tmomv

0.95 1 1.05

1

2

k
tmome

0.95 1 1.05

1

2

k
tmoml

0.95 1 1.05
1.1723

1.1723

1.1723

k
xk

0.95 1 1.05T
ot

al
P

re
ss

ur
e

1

2

k
xkes

0.95 1 1.05

1

2

k
xkge

0.95 1 1.05

1

2

k
xkl

0.95 1 1.05

1

2

k
xkle

0.95 1 1.05

1

2

k
xkvls

0.95 1 1.05T
ot

al
P

re
ss

ur
e

1

2

k
xkwvw

0.95 1 1.05

1

2

k
xkwlw

0.95 1 1.05

1

2

k
xkwew

0.95 1 1.05

1

2

k
qvapl

0.95 1 1.05

1

2

k
tnrgv

0.95 1 1.05T
ot

al
P

re
ss

ur
e

1

2

k
tnrgl

0.95 1 1.05

1

2

k
rodqq

0.95 1 1.05

1.17

1.175

k
qradd

0.95 1 1.05

1

2

k
qradv

0.95 1 1.05

1

2

k
qliht

0.95 1 1.05T
ot

al
P

re
ss

ur
e

1

2

k
sphts

0.95 1 1.05

1

2

k
cond

0.95 1 1.05

1

2

k
xkwvx

0.95 1 1.05

1

2

k
xkwlx

0.95 1 1.05

1.15

1.2

k
cd

0.95 1 1.05T
ot

al
P

re
ss

ur
e

1.16

1.18

k
cdfb

0.95 1 1.05

1

2

k
wkr

0.95 1 1.05

1

2

Figure 7.1: Sensitivities of TotalPressure to each of 33 variables varied over ±5% in a centered
parameter study. Note that most parameters had identically zero variation and k_tmoml has only
very slight variation.

CASL-U-2017-1445-000 110

7.2.2 Latin hypercube sampling studies

Latin hypercube sampling for sensitivity analysis is described in Section 3.2.3. Since all the COBRA-
TF parameters affect model form in the solution, they are taken to have uniform distributions on
the interval [−10%, 10%].

Dakota Input: To change the Dakota input from a centered parameter study to a LHS study,
the method and variables specifications change. The method block now prescribes a Latin hypercube
sampling study. The number of samples is specified to be N = 10 × (M =) 33 parameters, or
N = 330:

method
sampling

sample_type lhs
samples = 330
seed = 52983

The variables section changes to use uncertain variables with a uniform distribution on [0.9, 1.1]:

uniform_uncertain = 33
upper_bounds 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
1.1 1.1 1.1 1.1 1.1 1.1 1.1

lower_bounds 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
0.9 0.9 0.9 0.9 0.9 0.9 0.9

The full Dakota input file dakota_lhs_33.in is shown in Listing 7.2.
Results and Discussion: Relevant outputs generated by Dakota include the correlation coef-

ficients in the screen output dakota_lhs_33.out, and tabulated data in dakota_lhs_33.dat. The
portion of the Dakota console output with the partial correlation coefficients is shown in Figure 7.2.
The output is easier to comprehend when plotted with Matlab, as shown in the bar graph in Fig-
ure 7.3. The partial correlation coefficients near 1.0 indicate that there is a strong linear correlation
between k_cd and TotalPressure and between k_xkwlx and TotalPressure, consistent with phys-
ical intuition that total pressure drop should depend linearly on both the axial grid spacer loss
coefficient and the axial wall friction coefficient. Besides the relatively slight positive and linear
correlation with k_rodqq no other parameters are strongly significant by this measure (greater than
0.4), although several are greater than 0.1 and could be considered for inclusion in follow-on analyses
based on assessment of their interaction with other parameters or nonlinear behavior.

Figure 7.4 displays scatter plots, generated with Matlab, from the Dakota-generated tabular
data file. Each plot shows the overall relationship between each parameter and TotalPressure,
with the additional vertical variation being due to the other parameters not plotted. The red lines
are a linear regression on the displayed data, indicating the strength of the linear parameter response
relationship, again strongest for k_cd and k_xkwlx. There is no distinguishable input/output trend
for the other variables, and no patterns in the scatter cloud to suggest concern about strong nonlinear
or interaction effects.

CASL-U-2017-1445-000 111

Listing 7.2: Dakota input file for Latin hypercube sampling-based sensitivity analysis study with
330 samples and uniform input distributions.
environment

2 tabular_graphics_data
tabular_graphics_file ’dakota_lhs_33.dat ’

4

method
6 sampling

sample_type lhs
8 samples = 330

seed = 52983
10

variables
12 uniform_uncertain = 33

upper_bounds 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
14 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
16 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

1.1
18 lower_bounds 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
20 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
22 0.9

descriptors ’k_eta ’ ’k_gama ’ ’k_sent ’ ’k_sdent ’ ’k_tmasv ’
24 ’k_tmasl ’ ’k_tmasg ’ ’k_tmomv ’ ’k_tmome ’

’k_tmoml ’ ’k_xk ’ ’k_xkes ’ ’k_xkge ’ ’k_xkl ’
26 ’k_xkle ’ ’k_xkvls ’ ’k_xkwvw ’ ’k_xkwlw ’ ’k_xkwew ’

’k_qvapl ’ ’k_tnrgv ’ ’k_tnrgl ’ ’k_rodqq ’ ’k_qradd ’
28 ’k_qradv ’ ’k_qliht ’ ’k_sphts ’ ’k_cond ’ ’k_xkwvx ’

’k_xkwlx ’ ’k_cd ’ ’k_cdfb ’ ’k_wkr ’
30

interface
32 fork

asynchronous
34 evaluation_concurrency = 24

analysis_driver = ’dakota -vera -analysis ’
36 # extract TotalPressure metric (length 1)

analysis_components = ’TotPress ’
38 parameters_file = ’params.in ’

results_file = ’results.out ’
40 failure_capture recover NaN

work_directory
42 directory_tag

named ’workdir ’
44 file_save directory_save

46 responses
num_response_functions = 1

48 descriptors
’TotalPressure ’

50 no_gradients
no_hessians

CASL-U-2017-1445-000 112

Partial Rank Correlation Matrix between input and output:
TotalPressure

k_eta 3.51224e-02
k_gama -4.03274e-03
k_sent 5.59178e-02
k_sdent 5.19745e-02
k_tmasv -8.44833e-02
k_tmasl 1.00123e-01
k_tmasg 3.30672e-02
k_tmomv 2.74738e-02
k_tmome 2.05980e-02
k_tmoml -1.67107e-02
k_xk -3.88345e-02
k_xkes -7.66940e-02
k_xkge 6.84111e-02
k_xkl -1.20002e-01
k_xkle 2.65895e-02
k_xkvls -5.63864e-02
k_xkwvw 7.63692e-03
k_xkwlw -9.35968e-02
k_xkwew 1.80613e-02
k_qvapl 4.88638e-02
k_tnrgv 5.41003e-02
k_tnrgl 2.93560e-02
k_rodqq 4.55252e-01
k_qradd -4.37857e-02
k_qradv 4.78528e-02
k_qliht 4.10106e-03
k_sphts 8.48286e-02
k_cond -6.56069e-02
k_xkwvx -9.93737e-03
k_xkwlx 9.91808e-01
k_cd 9.67573e-01
k_cdfb -1.58433e-02
k_wkr -5.51666e-02

Figure 7.2: Dakota console output showing partial correlations for the COBRA-TF simulated Pro-
gression Problem 6.

CASL-U-2017-1445-000 113

-0.2 0 0.2 0.4 0.6 0.8 1

keta

kgama

ksent

ksdent

k tmasv

k tmasl

k tmasg

k tmomv

k tmome

k tmoml

kxk

kxkes

kxkge

kxkl

kxkle

kxkvls

kxkwvw

kxkwlw

kxkwew

kqvapl

k tnrgv

k tnrgl

k rodqq

kqradd

kqradv

kqliht

ksphts

kcond

kxkwvx

kxkwlx

kcd

kcdfb

kwkr

 0.04

-0.00

 0.06

 0.05

-0.08

 0.10

 0.03

 0.03

 0.02

-0.02

-0.04

-0.08

 0.07

-0.12

 0.03

-0.06

 0.01

-0.09

 0.02

 0.05

 0.05

 0.03

 0.46

-0.04

 0.05

 0.00

 0.08

-0.07

-0.01

 0.99

 0.97

-0.02

-0.06

Partial correlation for TotalPressure

Figure 7.3: Bar graph showing partial correlation for each of 33 variables with TotalPressure for
the COBRA-TF simulated Progression Problem 6.

CASL-U-2017-1445-000 114

k
eta

0.9 1 1.1T
o

ta
lP

re
ss

u
re

1.1

1.2

1.3

k
gama

0.9 1 1.1

1.1

1.2

1.3

k
sent

0.9 1 1.1

1.1

1.2

1.3

k
sdent

0.9 1 1.1

1.1

1.2

1.3

k
tmasv

0.9 1 1.1

1.1

1.2

1.3

k
tmasl

0.95 1 1.05T
o

ta
lP

re
ss

u
re

1.1

1.2

1.3

k
tmasg

0.9 1 1.1

1.1

1.2

1.3

k
tmomv

0.9 1 1.1

1.1

1.2

1.3

k
tmome

0.9 1 1.1

1.1

1.2

1.3

k
tmoml

0.9 1 1.1

1.1

1.2

1.3

k
xk

0.9 1 1.1T
o

ta
lP

re
ss

u
re

1.1

1.2

1.3

k
xkes

0.9 1 1.1

1.1

1.2

1.3

k
xkge

0.9 1 1.1

1.1

1.2

1.3

k
xkl

0.9 1 1.1

1.1

1.2

1.3

k
xkle

0.9 1 1.1

1.1

1.2

1.3

k
xkvls

0.9 1 1.1T
o

ta
lP

re
ss

u
re

1.1

1.2

1.3

k
xkwvw

0.9 1 1.1

1.1

1.2

1.3

k
xkwlw

0.9 1 1.1

1.1

1.2

1.3

k
xkwew

0.9 1 1.1

1.1

1.2

1.3

k
qvapl

0.9 1 1.1

1.1

1.2

1.3

k
tnrgv

0.9 1 1.1T
o

ta
lP

re
ss

u
re

1.1

1.2

1.3

k
tnrgl

0.9 1 1.1

1.1

1.2

1.3

k
rodqq

0.9 1 1.1

1.1

1.2

1.3

k
qradd

0.9 1 1.1

1.1

1.2

1.3

k
qradv

0.9 1 1.1

1.1

1.2

1.3

k
qliht

0.9 1 1.1T
o

ta
lP

re
ss

u
re

1.1

1.2

1.3

k
sphts

0.9 1 1.1

1.1

1.2

1.3

k
cond

0.9 1 1.1

1.1

1.2

1.3

k
xkwvx

0.9 1 1.1

1.1

1.2

1.3

k
xkwlx

0.9 1 1.1

1.1

1.2

1.3

k
cd

0.9 1 1.1T
o

ta
lP

re
ss

u
re

1.1

1.2

1.3

k
cdfb

0.9 1 1.1

1.1

1.2

1.3

k
wkr

0.9 1 1.1

1.1

1.2

1.3

Figure 7.4: Scatter plots with regression lines for each of 33 variables with TotalPressure for the
COBRA-TF simulated Progression Problem 6.

CASL-U-2017-1445-000 115

7.2.3 Morris Screening

Dakota Input: To change the study from LHS to the Morris screening method described in
Section 3.2.4, one need only change the Dakota method specification to the following:

method
psuade_moat
partitions = 9 #to generate 10 levels
samples = 340 # must be integer multiple of (num_vars + 1)
seed = 20

The full Dakota input file is available in examples/CobraTF/MorrisStudies/dakota_morris_33.in.
Results and Discussion: The results of the Morris study are the modified means and standard

deviations of the elementary effects in the Dakota console output, excerpted from dakota_morris_33.
out into Figure 7.5. These indicate that inputs 30 and 31 (k_cd and k_xkwlx) have a strong main
effect and some interaction effect and input 23 (k_rodqq) has a noticeable effect. They also indicate
that no other parameters have any effect, save 10, corresponding to k_tmoml, which has a very small
effect. This is physically consistent. The main forces impacting pressure drop are wall friction and
loss coefficients with minor impacts due to possible boiling and turbulent mixing.

7.2.4 Screening to Reduce Parameters

Figure 7.6 summarizes the results of the conducted sensitivity studies showing correlations from the
LHS study, effects from the Morris study, and variation seen in the centered parameter study. The
various sensitivity methods are consistent with each other. Based on these results, the following
studies will use only parameters inducing variation in TotalPressure: k_rodqq, k_xkwlx, and k_cd.
Of these, only the last two have strong effects. Because the axial grid spacer loss coefficient and the
axial wall friction coefficient appear in the axial momentum equations as multipliers of the axial
velocity squared, the total pressure drop can only be related to the sum of these two coefficients.
The impact of this sort of parameter nonidentifiability on model calibration will be illustrated in
the analyses of Section 7.3.3.

A LHS study with 30 samples was next conducted over the three most sensitive parameters to
(1) alleviate any potential confounding from the other parameters in the sensitivity metrics and (2)
generate simulation data to use for calibration studies in the next section. The input and output
files for this study are omitted from the text but are available in examples/CobraTF/LHSStudies/:

dakota_lhs_3.30.dat dakota_lhs_3.30.out dakota_lhs_3.30.in
dakota_lhs_3.20.dat dakota_lhs_3.20.out dakota_lhs_3.20.in

In particular, the tabular data files are used in the follow-on Bayesian calibration and surrogate
generation examples. A companion LHS study using a different random number seed and 20 samples
is also included for cross validation of the surrogate model.

CASL-U-2017-1445-000 116

>>>>>> PSUADE MOAT output for function 0:

*********************** MOAT Analysis ***********************

Input 1 (mod. mean & std) = 0.0000e+00 0.0000e+00
Input 2 (mod. mean & std) = 0.0000e+00 0.0000e+00
Input 3 (mod. mean & std) = 0.0000e+00 0.0000e+00
Input 4 (mod. mean & std) = 0.0000e+00 0.0000e+00
Input 5 (mod. mean & std) = 0.0000e+00 0.0000e+00
Input 6 (mod. mean & std) = 0.0000e+00 0.0000e+00
Input 7 (mod. mean & std) = 0.0000e+00 0.0000e+00
Input 8 (mod. mean & std) = 0.0000e+00 0.0000e+00
Input 9 (mod. mean & std) = 0.0000e+00 0.0000e+00
Input 10 (mod. mean & std) = 1.0800e-05 1.5179e-05
Input 11 (mod. mean & std) = 0.0000e+00 0.0000e+00
Input 12 (mod. mean & std) = 0.0000e+00 0.0000e+00
Input 13 (mod. mean & std) = 0.0000e+00 0.0000e+00
Input 14 (mod. mean & std) = 0.0000e+00 0.0000e+00
Input 15 (mod. mean & std) = 0.0000e+00 0.0000e+00
Input 16 (mod. mean & std) = 0.0000e+00 0.0000e+00
Input 17 (mod. mean & std) = 0.0000e+00 0.0000e+00
Input 18 (mod. mean & std) = 0.0000e+00 0.0000e+00
Input 19 (mod. mean & std) = 0.0000e+00 0.0000e+00
Input 20 (mod. mean & std) = 0.0000e+00 0.0000e+00
Input 21 (mod. mean & std) = 0.0000e+00 0.0000e+00
Input 22 (mod. mean & std) = 0.0000e+00 0.0000e+00
Input 23 (mod. mean & std) = 1.2557e-02 1.0046e-03
Input 24 (mod. mean & std) = 0.0000e+00 0.0000e+00
Input 25 (mod. mean & std) = 0.0000e+00 0.0000e+00
Input 26 (mod. mean & std) = 0.0000e+00 0.0000e+00
Input 27 (mod. mean & std) = 0.0000e+00 0.0000e+00
Input 28 (mod. mean & std) = 0.0000e+00 0.0000e+00
Input 29 (mod. mean & std) = 0.0000e+00 0.0000e+00
Input 30 (mod. mean & std) = 1.7927e-01 7.4740e-03
Input 31 (mod. mean & std) = 9.5450e-02 7.9801e-03
Input 32 (mod. mean & std) = 0.0000e+00 0.0000e+00
Input 33 (mod. mean & std) = 0.0000e+00 0.0000e+00
<<<<< Function evaluation summary: 340 total (0 new, 340 duplicate)

<<<<< Iterator psuade_moat completed.
<<<<< Environment execution completed.
DAKOTA execution time in seconds:

Total CPU = 0.77

Figure 7.5: Dakota output showing modified means and standard deviations of elementary effects
for the COBRA-TF simulated Progression Problem 6.

CASL-U-2017-1445-000 117

partial morris morris CPS

parameter correlation main interaction variation

k_eta 0.09

k_gama -0.02

k_sent -0.04

k_sdent -0.06

k_tmasv -0.05

k_tmasl 0.09

k_tmasg -0.19

k_tmomv -0.12

k_tmome 0.00

k_tmoml 0.07 1.26E-05 1.48E-05 low

k_xk 0.07

k_xkes -0.03

k_xkge -0.06

k_xkl 0.04

k_xkle -0.05

k_xkvls 0.12

k_xkwvw -0.10

k_xkwlw 0.15

k_xkwew -0.01

k_qvapl -0.09

k_tnrgv -0.02

k_tnrgl -0.01 1.80E-06 5.69E-06 low

k_rodqq 0.93 1.26E-02 1.00E-03 medium

k_qradd -0.02

k_qradv -0.01

k_qliht -0.01

k_sphts -0.07 1.80E-06 5.69E-06 low

k_cond -0.04

k_xkwvx 0.04

k_xkwlx 1.00 1.79E-01 7.47E-03 high

k_cd 1.00 9.55E-02 7.98E-03 high

k_cdfb -0.02

k_wkr 0.03

Figure 7.6: Summary of sensitivity analysis results for 33 COBRA-TF parameters. Missing values
are identically zero. Highlighted rows will be used in subsequent studies.

7.3 Calibration Studies

In this section, we emulate the model calibration processes described in Sections 5.1.1 and 6.2 by
generating synthetic data and then applying Dakota algorithms to determine the parameter values
yielding the best match between model and data. The 10 synthetic data points, generated by adding
independent and identically distributed Gaussian noise ε ∼ N (0, σ2) for σ = 0.025 to the nominal
TotalPressure = 1.17231 bar, are placed in ctf_dat.txt for consumption by Dakota. They are:

1.196761
1.177256
1.160102
1.203438

CASL-U-2017-1445-000 118

1.147125
1.126521
1.190142
1.142087
1.215291
1.192622

7.3.1 Deterministic Calibration

Dakota Input: A local gradient-based algorithm should perform well for this model calibration
problem since the previous global sensitivity analysis revealed smooth and linear trends. The Dakota
input file for this problem is shown in Listing 7.3. Highlights include: use of the NL2SOL method
(line 6) for local calibration; use of design variables (line 10) instead of uncertain variables, since we
are calibrating; use of calibration terms in the responses section (line 35); and input of the external
data file into Dakota (line 38) for computing the least-squares residuals. For illustrative purposes,
we include k_tmoml as a fixed state variable in lines 16-18.

Results and Discussion: For our three-parameter calibration study, the end of the Dakota
output (in file examples/CobraTF/Calibration/dakota_ calibration_3.out) indicates the best
solution found, as shown in Figure 7.7. The best values of the parameters are shown, followed by
the residuals between the model calculations and data. A summary of the study initial and final
values/residual norms appears in Table 7.3. Comparing the residual norms shows the optimization
solver made progress toward recovering the correct nominal values of k_xkwlx, k_cd and k_rodqq.

Table 7.3: Summary of three-parameter calibration for the COBRA-TF simulated Progression
Problem 6, initial and final parameter values and residual norm.

initial final

k_rodqq 1.0100 0.9815
k_cd 1.0103 1.0182

k_xkwlx 0.9799 0.9949
1
2 ||r||

2 0.0051 0.0039

7.3.2 Surrogate Construction

The analysis of Section 7.2 resulted in a reduction of the initial 33 COBRA-TF parameters to a final
set of three sensitive parameters with respect to induced variation in total pressure drop: k_xkwlx,
k_cd, and k_rodqq.

Dakota Input: Listing 7.4 shows the Dakota input file ctf_gp_eval.in for fitting a kriging
model with constant trend to total pressure drop as a function of these three parameters, and
using this fit to predict total pressure drop on a set of 20 validation runs. The kriging fit itself
was based on the results of using Dakota to run COBRA-TF on a Latin hypercube sample of size
N = 30. The output of these COBRA-TF runs was written to the file dakota_pstudy.dat, which
is subsequently read into this job via the import_points option (line 32). The validation runs were
generated randomly from the input parameter domain and written to the file ctf_val_des.dat,
and subsequently imported into Dakota via a distinct import_points option (line 19).

CASL-U-2017-1445-000 119

Listing 7.3: Dakota input file for deterministic local gradient-based calibration of three key param-
eters in the COBRA-TF simulated Progression Problem 6.

1 environment
tabular_graphics_data

3 tabular_graphics_file ’dakota_calibration_3.dat ’

5 method
nl2sol

7 convergence_tolerance 1.0e-6

9 variables
continuous_design = 3

11 initial_point 1.01 1.0103 0.9799
upper_bounds 1.05 1.1 1.1

13 lower_bounds 0.95 0.9 0.9
descriptors ’k_rodqq ’ ’k_cd ’ ’k_xkwlx ’

15

continuous_state = 1
17 initial_state 1.0

descriptors ’k_tmoml ’
19

interface
21 fork

asynchronous
23 analysis_driver = ’dakota -vera -analysis ’

extract TotalPressure metric (length 1)
25 analysis_components = ’TotPress ’

parameters_file = ’params.in ’
27 results_file = ’results.out ’

failure_capture recover NaN
29 work_directory

directory_tag
31 named ’workdir ’

file_save directory_save
33

responses
35 calibration_terms = 1

descriptors
37 ’TotalPressure ’

calibration_data_file = ’ctf_dat.txt ’
39 freeform

num_experiments = 10
41 numerical_gradients

central
43 # coarse FD step as cobra might not be sensitive enough

fd_step_size = 1.0e-2
45 no_hessians

CASL-U-2017-1445-000 120

Listing 7.4: Dakota input file producing predictions for 20 validation runs from a GP emulator with
estimated constant trend for the COBRA-TF simulated Progression Problem 6.

1 # Build and evaluate a Gaussian process emulator of COBRA -TF output
at a user specified set of points

3

environment
5 method_pointer = ’EvalSurrogate ’

tabular_graphics_data
7 tabular_graphics_file = ’ctf_gp_evals.dat ’

9 # Method to perform evaluations of the emulator

11 method
id_method = ’EvalSurrogate ’

13 model_pointer = ’SurrogateModel ’

15 # Verbose will show the type form of the surrogate model
output verbose

17

list_parameter_study
19 import_points = ’ctf_val_des.dat ’

21 # Surrogate model specification
model

23 id_model = ’SurrogateModel ’
surrogate global

25 # GP model
gaussian_process surfpack

27 trend
constant

29 # compute and print diagnostics after build
metrics ’rsquared ’ ’root_mean_squared ’

31 press
import_points = ’dakota_pstudy.dat ’

33

variables
35 uniform_uncertain = 3

upper_bounds 1.1 1.1 1.1
37 lower_bounds 0.9 0.9 0.9

descriptors ’k_xkwlx ’ ’k_cd ’ ’k_rodqq ’
39

responses
41 response_functions = 1

descriptors = ’TotalPressure ’
43 no_gradients

no_hessians

CASL-U-2017-1445-000 121

<<<<< Function evaluation summary: 44 total (0 new, 44 duplicate)
<<<<< Best parameters =

9.8149284406e-01 k_rodqq
1.0181904232e+00 k_cd
9.9488498631e-01 k_xkwlx
1.0000000000e+00 k_tmoml

<<<<< Best residual norm = 8.8785103869e-02; 0.5 * norm^2 = 3.9413973345e-03
<<<<< Best residual terms =

-2.1621000000e-02
-2.1160000000e-03
1.5038000000e-02

-2.8298000000e-02
2.8015000000e-02
4.8619000000e-02

-1.5002000000e-02
3.3053000000e-02

-4.0151000000e-02
-1.7482000000e-02

<<<<< Best model response =
1.1751400000e+00

<<<<< Best data not found in evaluation cache

Confidence Interval for k_rodqq is [7.2459126011e-01, 1.2383944280e+00]
Confidence Interval for k_cd is [1.0181904232e+00, 1.0181904232e+00]
Confidence Interval for k_xkwlx is [9.9488498631e-01, 9.9488498631e-01]

Figure 7.7: Dakota console output showing final results for calibration with three parameters.

Results and Discussion: Figure 7.8 compares the emulator predictions with the COBRA-TF
calculations of total pressure drop for the 20 validation runs. The left panel plots predicted value
against calculated value, with the resulting points falling very close to the desired 45◦ line. The right
panel plots the standardized residuals (calculated minus predicted total pressure drop divided by
standard error of predicted total pressure drop) against calculated value, indicating a fairly constant
scatter in the standardized residuals around the zero line across the spectrum of calculated values
with the exception of two potential outliers having standardized residual values of approximately
−1.5. Excluding outliers, this result is desirable in that it both indicates unbiased prediction and
supports the assumption of a homogeneous (constant) process variance σ2. To investigate potential
outliers, a simple screening procedure is applied to this standardized residual plot. First compute
the interquartile range (IQR) of the standardized residuals, defined as the 75-th percentile minus
the 25-th percentile of the standardized residuals. Second compute lower and upper bounds as
the 25-th percentile minus 1.5 × IQR and the 75-th percentile plus 1.5 × IQR, respectively. Any
standardized residuals falling outside these bounds are flagged for further investigation as potential
outliers. For this kriging fit, the lower and upper bounds calculated in this way were (−1.17, 1.16).
The two potential outliers previously flagged do indeed fall outside this range, having standardized
residual values of −1.60 and −1.49, while the remaining standardized residuals fall well within this
range.

The leave-one-out cross-validation RMSPE of this kriging emulator, requested with the option
press (line 31), evaluated to 4.0198651083e-05. When validation samples are available, as in this

CASL-U-2017-1445-000 122

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

1.10 1.15 1.20 1.25

1.
10

1.
15

1.
20

1.
25

Calculated Total Pressure Drop

P
re

di
ct

ed
 T

ot
al

 P
re

ss
ur

e
D

ro
p

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

1.10 1.15 1.20 1.25

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

Calculated Total Pressure Drop

S
ta

nd
ar

di
ze

d
R

es
id

ua
l T

ot
al

 P
re

ss
ur

e
D

ro
p

Figure 7.8: Predicted vs. calculated total pressure drop (left panel) and standardized residual vs.
calculated total pressure drop (right panel) for 20 validation runs (red circles).

example, they can be used to compute a validation RMSPE. For Nv validation samples, calculate

RMSPE =

√√√√ 1

Nv

Nv∑
i=1

(Ci − Pi)2 ,

where Pi and Ci denote the i-th predicted and calculated values, respectively. For our validation
sample of Nv = 20, the RMSPE evaluates to 2.975525e-05. These RMSPE values are 0.018%
and 0.013% of the observed range in the 20 calculated total pressure drops, indicating the kriging
emulator possesses high accuracy for this application.

The assumption of Gaussian errors can be checked by examining normal probability plots of
the standardized residuals from both leave-one-out cross validation and out-of-sample validation.
Figure 7.9 shows normal probability plots for both of these cases. Theoretical quantiles from the
standard normal distribution are plotted on the x-axis, while the corresponding sample quantiles of
the standardized residuals are plotted on the y-axis. Consistency with the Gaussian error assump-
tion is indicated by the plotted points exhibiting strong linear association. The simple correlation
coefficients for the two cases are 0.990 and 0.979, respectively, suggesting that the Gaussian error
assumption is reasonable. In particular, the potential outliers identified previously do not have
standardized errors inconsistent with the Gaussian error assumption, suggesting the surrogate as-
sumptions are validated. The standardized residuals resulting from leave-one-out cross validation
are correlated, making the normal probability plot somewhat harder to interpret as the theoreti-
cal quantiles are calculated assuming independence. On the other hand, for the validation runs,
the residuals were transformed to obtain uncorrelated standardized residuals for use in the normal
probability plot [6].

7.3.3 Bayesian Calibration

We illustrate here the use and comparison of the Bayesian model calibration techniques DRAM and
DREAM, discussed in Section 6.2, for COBRA-TF. We focus on the three parameters k_xkwlx,

CASL-U-2017-1445-000 123

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

Leave−one−out Cross Validation

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−
2

0
2

4

Out−of−sample Validation

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s
Figure 7.9: Normal probability plots based on standardized residuals from leave-one-out cross vali-
dation (left panel) and out-of-sample validation (right panel).

k_cd, and k_rodqq which, as detailed in the sensitivity analysis of Section 7.2, had non-negligible
values for the Morris elementary effect statistics. The synthetic data of Section 7.3, generated as
detailed in Section 6.2.5, is consistent with the likelihoods employed in DRAM and DREAM.

For DRAM and DREAM implementation, we employed the surrogate constructed using the
three sensitive parameters (denoted collectively by θ), as detailed in Section 7.3.2. In both analyses,
we enforced the parameter bounds summarized in Table 7.4. We employed uniform densities over
these ranges as prior densities for each random variable. A statistical model of the synthetic data
provided in Section 7.3 is given by

Di = y(θ) + εi , i = 1, . . . , N ,

where y(θ) is the COBRA-TF total pressure drop for parameter value θ, εi ∼ N (0, σ2), and N = 10.
The inverse variance 1/σ2 was assigned a Gamma prior distribution having a = 1 and b = 0.000625 =
0.0252.

Table 7.4: Parameter bounds used to construct prior densities.

Descriptors k_xkwlx k_cd k_rodqq

Lower Bounds 0.9 0.9 0.9
Upper Bounds 1.1 1.1 1.1

We ran the DRAM chain for 202,000 iterations and constructed 5 DREAM chains each of
length 42,000. As illustrated by the representative DRAM chains for k_rodqq and σ2, which are
plotted in Figure 7.10(a) and Figure 7.10(b), the chain has burned in by 2000 so we employed
the last 200,000 elements thinned by taking every 20th iterate for a total of 10,000 samples for
kernel density estimation (kde). For DREAM, the first 10,000 iterates of the combined chains
were discarded as burn in, leaving 200,000 elements which were thinned to 10,000 samples as with

CASL-U-2017-1445-000 124

0 2000 4000 6000 8000 10000

0.
90

0.
95

1.
00

1.
05

1.
10

Chain index

k_
ro

dq
q

(a)

0 2000 4000 6000 8000 10000

0.
00

0
0.

00
2

0.
00

4
0.

00
6

Chain index

σ2

(b)

0.90 0.95 1.00 1.05 1.10

0
2

4
6

8
10

k_xkwlx

D
en

si
ty

(c)

DRAM
DREAM

0.000 0.002 0.004 0.006

0
50

0
10

00
15

00

σ2

D
en

si
ty

(d)

DRAM
DREAM

Figure 7.10: (a) and (b): Representative DRAM chains for k_rodqq and σ2. (c) and (d): Comparison
of the densities for k_xkwlx and σ2 provided by DRAM and DREAM.

DRAM. The DRAM and DREAM densities for k_xkwlx are compared in Figure 7.10(c). For σ2,
the comparison is provided in Figure 7.10(d).

These results provide a verification test in the manner detailed in Section 6.2.4 (iv). Although
more rigorous verification to an analytical solution is not possible, the two sampling algorithms
considered can be directly compared. For example, the DRAM and DREAM marginal densities for
k_xkwlx compare favorably. For σ2, DREAM appears to undersample a heavy tail in its posterior
density. To explore further, energy tests as described in Appendix A.3 are conducted. These
tests compare the joint DRAM and DREAM samples to test the hypothesis that the underlying
target distributions are equivalent. When the DRAM and DREAM samples are thinned further
down to 100, 1000, and 5000, they cannot be distinguished from each other at the 1% level of
significance. However, a significant difference is observed between the full sample sets of size 10,000
(p-value 0.001). These results indicate that DRAM and DREAM provide similar calibrations in
this example, but that DREAM may undersample heavy tailed distributions. Further investigation
of this behavior is necessary.

Figure 7.1 shows that total pressure drop exhibits a positive linear trend in inputs k_xkwlx
and k_cd. The Morris sensitivity results of Figure 7.6 indicate very little interaction between
these inputs. In combination, these observations suggest that k_xkwlx and k_cd may trade-off in

CASL-U-2017-1445-000 125

the process of being calibrated and, in fact, this behavior is illustrated in Figure 7.11 by calibrated
negative correlation between them (recall prior independence between all three inputs was assumed).
These plots reflect the parameter limits specified in Table 7.4. The fact that DRAM and DREAM
yield similar joint sample plots further verifies the substantial degree of consistency in the results
of both methods applied to this implementation of COBRA-TF.

The input decks for DRAM and DREAM are provided in Listings 7.5 and 7.6. These input decks
both show a general approach to redirecting the likelihood calculation to an emulator. In Listing 7.5,
line 3 redirects QUESO to the model block in lines 14-20, in which Dakota builds a Gaussian
process surrogate with constant trend built from data contained in the file dakota_pstudy.dat. An
analagous approach to surrogate redirection is taken in Listing 7.6. The file ctf_dat.txt contains
the calibration data listed at the beginning of Section 7.3 along with nominal observation error
variances corresponding to each observation. Each row represents an individual experiment, and
the associated observations are placed in the first set of columns followed by the nominal variances
in the same order.

It was noted in Section 6.2.3 that once Bayesian chains have been constructed, values from the
chain can be used as inputs to surrogate models to compute calibrated predictions for additional
quantities of interest. This is illustrated in Figure 7.12, where we compare predictive distributions for
the total pressure drop computed from the surrogate model evaluated using inputs from the DRAM
and DREAM chains. The nominal total pressure drop value of 1.172 bar, computed using COBRA-
TF with nominal parameter values, lies within the central portion of both predictive distributions.
Note that samples of the mean-zero Gaussian error process are added to each surrogate prediction,
where the variance of the error is given by the sampled variance value corresponding to the parameter
sample generating the surrogate prediction. It appears that the predictive distribution based on
DREAM samples slightly underestimates the predictive uncertainty, likely due to the previously
observed undersampling of the heavy tailed σ2 posterior distribution. Significant differences between
DRAM and DREAM predictive samples are detected by the energy test at the 1% level for sample
sizes of 1000, 5000, and 10,000, but not for 100 (p-value 0.188).

The Dakota input deck used to generate surrogate predictions is provided in Listing 7.7, where
one can note that it inputs DRAM values from the file dram_thinned.txt and exports surro-
gate predictions of total pressure drop to the file ctf_gp_evals_dram.dat. Using the DRAM and

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

0.90 0.95 1.00 1.05 1.10

0.
90

0.
95

1.
00

1.
05

1.
10

k_xkwlx

k_
cd

(a)

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.90 0.95 1.00 1.05 1.10

0.
90

0.
95

1.
00

1.
05

1.
10

k_xkwlx

k_
cd

(b)

Figure 7.11: Joint sample points for k_xkwlx and k_cd provided by (a) DRAM and (b) DREAM.

CASL-U-2017-1445-000 126

1.00 1.05 1.10 1.15 1.20 1.25 1.30

0
2

4
6

8
10

12
14

Total Pressure Drop

D
en

si
ty

●

DRAM
DREAM
Nominal

●

Figure 7.12: Comparison of the predictive distributions constructed using the surrogate with inputs
from the DRAM and DREAM chains. The nominal total pressure drop value of 1.172 bar was
computed using COBRA-TF.

DREAM predictive samples (error-adjusted surrogate predictions) and Wilks’ method, a new total
pressure drop measurement has 99% chance of not exceeding 1.262 and 1.246, respectively, with
99% confidence based on 78th-order Wilks applied to 10,000 samples. DREAM undersampling of
the σ2 posterior heavy tail is likely to have an impact on tail behavior of predictive distributions,
potentially biasing the estimation of coverage thresholds as suggested in this example.

CASL-U-2017-1445-000 127

Listing 7.5: Input for Dakota-QUESO DRAM as applied to the COBRA-TF surrogate for Progres-
sion Problem 6.
method

2 bayes_calibration queso
model_pointer = ’GP ’

4 logit_transform
dram

6 proposal_covariance prior
calibrate_error_multipliers one

8 hyperprior_alphas 1
hyperprior_betas 1

10 chain_samples = 202000
seed = 52983

12 export_chain_points_file = ’dram_result.txt ’

14 model
id_model = ’GP’

16 surrogate global
gaussian_process surfpack

18 trend
constant

20 import_build_points_file = ’dakota_pstudy.dat ’ annotated

22 variables
uniform_uncertain 3

24 upper_bounds 1.1 1.1 1.1
lower_bounds 0.9 0.9 0.9

26 descriptors ’k_xkwlx ’ ’k_cd ’ ’k_rodqq ’

28 interface
direct

30 analysis_driver = ’text_book ’

32 responses
calibration_terms = 1

34 descriptors ’TotalPressure ’
calibration_data_file ’ctf_dat.txt ’ freeform

36 num_experiments = 10
variance_type = ’scalar ’

38 no_gradients
no_hessians

CASL-U-2017-1445-000 128

Listing 7.6: Input for Dakota DREAM as applied to the COBRA-TF surrogate for Progression
Problem 6.

1 method
bayes_calibration dream

3 model_pointer = ’GP ’
calibrate_error_multipliers one

5 hyperprior_alphas 1
hyperprior_betas 1

7 chain_samples = 210000
chains = 5

9 seed = 52983
export_chain_points_file = ’dream_result.txt ’

11

model
13 id_model = ’GP’

surrogate global
15 gaussian_process surfpack

trend
17 constant

import_build_points_file = ’dakota_pstudy.dat ’ annotated
19

variables
21 uniform_uncertain 3

upper_bounds 1.1 1.1 1.1
23 lower_bounds 0.9 0.9 0.9

descriptors ’k_xkwlx ’ ’k_cd ’ ’k_rodqq ’
25

interface
27 direct

analysis_driver = ’text_book ’
29

responses
31 calibration_terms = 1

descriptors ’TotalPressure ’
33 calibration_data_file ’ctf_dat.txt ’ freeform

num_experiments = 10
35 variance_type = ’scalar ’

no_gradients
37 no_hessians

CASL-U-2017-1445-000 129

Listing 7.7: Dakota input used to sample predictive distributions for total pressure drop using
DRAM evaluations.

1 # Build and evaluate a Gaussian process emulator of COBRA -TF output
at a user specified set of points

3

environment
5 method_pointer = ’EvalSurrogate ’

tabular_graphics_data
7 tabular_graphics_file = ’ctf_gp_evals_dram.dat ’

9 # Method to perform evaluations of the emulator

11 method
id_method = ’EvalSurrogate ’

13 model_pointer = ’SurrogateModel ’

15 # Verbose will show the type form of the surrogate model
output verbose

17

list_parameter_study
19 import_points = ’dram_thinned.txt ’

21 # Surrogate model specification
model

23 id_model = ’SurrogateModel ’
surrogate global

25 # GP model
gaussian_process surfpack

27 trend
constant

29 # compute and print diagnostics after build
metrics ’rsquared ’ ’root_mean_squared ’

31 press
import_points = ’dakota_pstudy.dat ’

33

variables
35 uniform_uncertain = 3

upper_bounds 1.1 1.1 1.1
37 lower_bounds 0.9 0.9 0.9

descriptors ’k_xkwlx ’ ’k_cd ’ ’k_rodqq ’
39

responses
41 response_functions = 1

descriptors = ’TotalPressure ’
43 no_gradients

no_hessians

CASL-U-2017-1445-000 130

Chapter 8

CIPS — Crud Induced Power Shift

This chapter extends the study of the COBRA-TF problem of the previous chapter to include
coupling to both neutronics (via MPACT) and crud chemistry (via MAMBA1D) as needed to
model the CIPS phenomenon. The problem geometry is essentially the same, consisting of a single
17x17 assembly. The VUQ workflow is extended to include user parameters available through the
VERA Common Input, low-level closure (code) parameters for both COBRA-TF and MAMBA1D,
and effects from perturbing neutronics cross-sections. For CIPS, the quantities of interest consist of
maximum assembly crud thickness and total boron, both of which indicate the occurrence of power
shifts arising from deposited crud.

8.1 The CIPS Phenomenon

In brief, CIPS is a coupled multi-physics phenomenon in which impurities (crud) present in the
coolant deposit on the fuel pin cladding and absorb boron. The presence of boron locally reduces
moderation which suppresses power and shifts the power profile accordingly. This phenomenon is
modeled in CASL by treating the coupled effects of thermal hydraulics, neutronics and crud chem-
istry using the VERA codes COBRA-TF, MPACT and MAMBA1D, respectively. The interaction
among the codes including data exchanged is shown in Figure 2.4. For the purposes of this study we
chose two Quantities of Interest (QoI) consisting of maximum crud thickness and total boron, both
of which indicate the onset of CIPS behavior. More details about the CIPS simulation capability
in VERA can be found in [46] and [9].

8.2 Parameter Ranking and Downselection

A Phenomena Identification Ranking Table (PIRT) assessment for CIPS was conducted to iden-
tify all potentially influential physical phenomena affecting CIPS. From this, corresponding input
parameters which possibly influence the two quantities of interest, i.e. maximum crud thickness
and total boron, were selected and expert opinion used to determine nominal values and ranges for
subsequent Quantitative PIRT (QPIRT) studies. For the purposes of this study, QPIRT amounts
to using Dakota to perform centered parameter sensitivity studies around the nominal values with
perturbations equal to the parameter range. The result of these studies is a quantified ranking of
parameter importance based on single parameter effects which can then be used to downselect a
subset of parameters to use in sampling for UQ.

The candidate set of physical phenomena deemed important to CIPS, i.e. those expected to

CASL-U-2017-1445-000 131

influence maximum crud thickness and total boron, include coolant flow, heat transfer, power char-
acteristics and crud chemistry. Input parameters related to these take one of four forms:

• normal user input via VERA Common Input

• code-level COBRA-TF parameters via auxiliary input text files, vuq_mult.txt and vuq_param.txt

• code-level MAMBA1D parameters via an auxiliary input text file, vuq_mult_mamba.txt

• Cross-sections perturbed using the approach described in Appendix C.3.3 and incorporated as
a collection of pre-generated files from which Dakota can select, i.e. the file number becomes
a Dakota input parameter

All relevant MPACT parameters are included in those treated through VERA Common Input.
The following subsections summarize the results of the four different types of parameter studies.

8.2.1 VERA Common Input Parameters

For user parameters available in VERA Common Input the parameters summarized in Table 2.7
are potentially important to CIPS and are included in a QPIRT analysis. This is performed as a
Dakota centered parameter study using a single step in the positive and negative directions with
step size equal to the parameter ranges shown. Results are summarized in Table 8.1.

Table 8.1: CIPS VERA Common Input Centered Parameter Sensitivity Study
Max Total
Crud Boron

Perturb Parameter (XML-based) diff (%) diff (%)

0.9950 *ASSEMBLIES/Assembly_B9B-128I/Fuels/Fuel_BLK/thden 0.00 0.00
1.0050 *ASSEMBLIES/Assembly_B9B-128I/Fuels/Fuel_BLK/thden 0.00 0.00
0.9950 *ASSEMBLIES/Assembly_B9B-128I/Fuels/Fuel_U43/thden 0.00 0.00
1.0050 *ASSEMBLIES/Assembly_B9B-128I/Fuels/Fuel_U43/thden 0.00 0.00
0.9800 *CORE/rated_flow 2.92 22.92
1.0200 *CORE/rated_flow −3.79 −20.10

1.0400 *CORE/rated_power 10.74 54.20
−0.0500 +ASSEMBLIES/Assembly_B9B-128I/Fuels/Fuel_BLK/enrichments[1] 0.12 0.88
0.0500 +ASSEMBLIES/Assembly_B9B-128I/Fuels/Fuel_BLK/enrichments[1] −0.24 −0.63

−0.0500 +ASSEMBLIES/Assembly_B9B-128I/Fuels/Fuel_U43/enrichments[1] −0.14 0.04
0.0500 +ASSEMBLIES/Assembly_B9B-128I/Fuels/Fuel_U43/enrichments[1] 0.21 0.04
0.4826 +STATES/State_1/pressure 71.28 133.94
−0.4826 +STATES/State_1/pressure −49.88 −99.98

−2.7778 +STATES/State_1/tinlet −8.23 −41.93

2.7778 +STATES/State_1/tinlet 8.39 52.19

8.2.2 COBRA-TF Parameters

A QPIRT for all COBRA-TF code-level (e.g. closure relation) parameters exposed through the
auxiliary input files is summarized in Table 8.2. Missing entries in the table correspond to runs
which failed to finish. These failures are initially thought to be due to hardware issues on Titan
based on the termination message, but additional effort was not made to rigorously confirm this.

CASL-U-2017-1445-000 132

Table 8.2: CIPS COBRA-TF Input Centered Parameter Sensitivity Study
Max Total Max Total
Crud Boron Crud Boron

Parameter Value diff (%) diff (%) Value diff (%) diff (%)
k_cd 0.9 −0.11 −0.05 1.1 −0.08 0.68
k_cdfb 0.9 0.00 0.00 1.1 0.00 0.00

k_clad_avg_tmp 0.9 0.00 0.00 1.1 0.00 0.00
k_cond 0.9 0.00 0.00 1.1 0.00 0.00

k_cool_avg_den 0.9 −1.70 −4.75 1.1 1.09 7.65
k_cool_avg_tmp 0.9 0.21 0.25 1.1 −0.41 −0.58

k_eta 0.9 0.00 0.00 1.1 0.00 0.00
k_fuel_avg_tmp 0.9 0.00 0.00 1.1 0.00 0.00

k_gama 0.9 0.01 −0.11 1.1 −0.02 0.03
k_hgap 0.9 0.00 0.00
k_htcl 0.9 0.00 0.00 1.1 0.00 0.00
k_htcv 0.9 0.00 0.00 1.1 0.00 0.00
k_qliht 0.9 0.00 0.00 1.1 0.00 0.00
k_qradd 0.9 0.00 0.00 1.1 0.00 0.00
k_qradv 0.9 0.00 0.00 1.1 0.00 0.00
k_qvapl 0.9 0.00 0.00 1.1 0.00 0.00
k_rodqq 0.9 −20.40 −89.07 1.1 23.85 143.28
k_sdent 0.9 0.00 0.00 1.1 0.00 0.00
k_sent 0.9 0.00 0.00 1.1 0.00 0.00
k_sphts 0.9 0.00 0.00 1.1 0.00 0.00
k_tmasg 0.9 0.00 0.00 1.1 0.00 0.00
k_tmasl 9.5 0.03 −0.04 1.0 0.02 0.27
k_tmasv 0.9 0.03 −0.12 1.1 0.04 −0.05

k_tmome 0.9 0.00 0.00 1.1 0.00 0.00
k_tmoml 0.9 −0.26 0.22 1.1 −0.21 0.00
k_tmomv 0.9 0.00 0.00 1.1 0.00 0.00
k_tnrgl 0.9 0.07 0.14 1.1 0.02 −0.07

k_tnrgv 1.1 0.03 −0.13

k_wkr 1.1 0.15 −0.08

k_xk 0.9 0.00 0.00 1.1 0.00 0.00
k_xkes 0.9 0.00 0.00 1.1 0.00 0.00
k_xkge 0.9 0.00 0.00 1.1 0.00 0.00
k_xkl 0.9 0.00 0.00 1.1 0.00 0.00
k_xkle 0.9 0.00 0.00 1.1 0.00 0.00
k_xkvls 0.9 0.00 0.00 1.1 0.00 0.00
k_xkwew 0.9 0.00 0.00 1.1 0.00 0.00
k_xkwlw 0.9 0.06 0.10 1.1 0.15 −0.08

k_xkwlx 0.9 −0.03 −0.81 1.1 0.16 0.99
k_xkwvw 0.9 0.00 0.00 1.1 0.00 0.00
k_xkwvx 0.9 0.02 −0.14 1.1 0.01 0.00

CASL-U-2017-1445-000 133

8.2.3 MAMBA1D Parameters

The MAMBA1D coolant chemistry parameters are treated in the same manner as the COBRA-TF
closure parameters, i.e. an auxiliary file is used to impose perturbations via (2.5). The current set of
parameters is summarized in Table 2.8, and centered parameter sensitivity study (QPIRT) results
are summarized in Table 8.3. More detailed information about the parameters can be obtained from
[26].

For the QPIRT, all MAMBA1D parameters listed in Table 2.8 were perturbed by ±10%. This
default reflects the fact that we are using MAMBA1D which is a lower fidelity version of MAMBA2D
and MAMBA3D. The parameters for MAMBA1D often lump finer physical features into more em-
pirical values, and this makes such parameters less amenable to expert opinion for both their ranges
as well as their uncertainty distributions. Missing entries in the table correspond to simulations for
which a converged solution was not achieved.

8.2.4 Neutronics Cross Section Sensitivity

The sensitivity of maximum crud thickness and total boron to neutronics cross sections is addressed
using a collection of pre-generated cross section libraries (text files) that perturb the cross section
data in such a way that correlations among the different reactions are preserved. Details of how
these perturbed cross section files are created are described in Appendix C.3.3. From the perspective
of a Dakota sensitivity study, the files are parameterized by file number and a sensitivity study is
performed using the entire collection of files. Results are summarized in Table 8.4.

8.2.5 Parameter Downselect

The preceding parameter sensitivity (QPIRT) studies are used to downselect parameters for subse-
quent UQ sampling studies. Parameters whose perturbations produced a change in either quantity
of interest of 10% or more are retained. In addition, the MAMBA1D parameters Bfract and
Bthresh are retained based on their use in previous CIPS calibration activity [9]. The one relevant
COBRA-TF parameter k_rodqq represents a code coupling parameter governing the fraction of
power transferred from neutronics (MPACT) into the coolant (COBRA-TF) and is not a physical
parameter. Because the sensitivity of CIPS to power is accounted for in a physically consistent
manner by virtue of the code coupling, the k_rodqq parameter is not included in the remainder of
this study. Removal of this parameter together with the observation that the largest effect of cross
section perturbations is less than 2% indicates that no COBRA-TF and cross section perturbations
are sufficiently important to include in the UQ sampling studies.

The parameters chosen for inclusion in UQ sampling studies to generate samples used for Wilks
analyses are summarized in Table 8.5. The first four entries correspond to VERA Common Input
type parameters, while the rest represent low-level MAMBA1D code parameters exposed via aux-
iliary input. The sizes of the perturbations have been reduced based on our (ongoing) experience
performing sampling with joint parameter variations in which we find it more difficult to achieve
converged solutions.

8.3 CIPS UQ Simulations

As of version 6.4, Dakota supports Wilks-based random sampling for any probability quantile,
confidence level, order statistic and both one-sided and two-sided bounds. This capability is limited
to a single response. With this capability, we could use Dakota to perform various Wilks analyses.

CASL-U-2017-1445-000 134

Table 8.3: CIPS MAMBA1D Input Centered Parameter Sensitivity Study
Max Total Max Total
Crud Boron Crud Boron

Parameter diff (%) diff (%) diff (%) diff (%)

k_Bfract 0.83 −0.78

k_Bthresh −0.88 11.68 −0.42 −12.73

k_Cpor −18.76 −52.54

k_crud_solid 11.40 28.73 −5.98 −23.83

k_Dc 0.30 −1.71

k_delta_r −3.51 −21.43

k_fac 7.02 18.60 −8.03 −19.88

k_Hc 7.02 18.60 −8.03 −19.88

k_Hfg −0.25 1.79 0.30 −1.71

k_kp2 −7.35 −18.00 7.22 17.11
k_M −0.16 7.71 −0.88 −6.82

k_MB −0.01 −6.55 −0.47 6.19
k_MB10 0.00 0.00 0.00 0.00
k_MB11 0.00 0.00
k_MFe −1.19 −2.66 0.47 2.87
k_mit0 −52.92 −99.99 111.24 194.02

k_mitMax 0.42 −4.18 0.00 0.00
k_MLi −0.24 −0.69 0.00 0.70
k_MNi 0.28 1.55 −0.53 −1.34

k_Nc 7.02 18.60 −8.03 −19.88

k_rc −8.03 −19.88

k_RtcB 0.00 0.00
k_RtcB2 0.06 −1.61 −0.31 2.43
k_RtcB3 1.59 1.93 −1.46 −1.42

k_RtcB4 0.53 0.19 −0.04 0.05
k_RtcB5 0.00 0.01 0.00 0.00
k_RtcB6 0.00 0.00 0.00 0.00
k_RtcNB 0.06 −0.74 −0.16 0.48
k_Tsat −55.40 −99.83

However, the significant computational cost of each single assembly CIPS simulation led us to
instead generate a large collection of random samples (799) with which we can then perform several
variants of Wilks UQ.

We generated a collection of Dakota random sampling studies on the ORNL Titan supercomputer
for the set of parameters in Table 8.5. Each Dakota study involved 40 concurrent runs (Titan imposes
an upper limit on the number of simultaneous processes), each of which required 60 cores. Run
times varied but were typically about 15 hours. A total of 20 such Dakota studies were run with
each one differing only by the random number seed used to sample from the parameter distributions.
Of the 800 runs we attempted, one run failed to converge within the 24 hour wall-time limit. An
example Dakota input file is shown in Listing 8.1.

CASL-U-2017-1445-000 135

Listing 8.1: Dakota input file for random (Monte Carlo) sampling using the parameter distributions
in Table 8.5.
DAKOTA input file for UQ sampling study

2

environment
4 tabular_graphics_data

tabular_graphics_file ’dakota_sampling.dat ’
6

method
8 sampling

samples = 40
10 seed = 01716 rng rnum2

sample_type random
12 distribution cumulative

14 variables
normal_uncertain 4

16 means 291.333333333 15.5132039025 1.0 1.0
std_deviations 1.3889 0.241315 0.02 0.01

18 descriptors ’STATES/State_1/tinlet ’
’STATES/State_1/pressure ’

20 ’*CORE/rated_power ’
’*CORE/rated_flow ’

22

uniform_uncertain 11
24 lower_bounds 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

upper_bounds 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
26 descriptors ’k_Bthresh ’ ’k_Cpor ’ ’k_crud_solid ’ ’k_delta_r ’ ’k_fac ’ ’k_Hc ’

’k_kp2 ’ ’k_mit0 ’ ’k_Nc ’ ’k_rc ’ ’k_Tsat ’
28

interface
30 fork

asynchronous
32 evaluation_concurrency = 40

analysis_driver = ’dakota -vera -analysis ’
34 analysis_components = ’k_eff ’ ’max_fuel_T ’ ’max_fuel_P ’

parameters_file = ’params.in ’
36 results_file = ’results.out ’

failure_capture recover NaN NaN
38 work_directory

directory_tag
40 named ’workdir ’

file_save directory_save
42 link_files "output_adapt *" "COBRATF.ini" "MPACT.ini" "materials.inp" "

bison_table_SGS_rev5.txt"

44 responses
num_response_functions = 2

46 descriptors
’max_crud_thickenss ’ ’total_boron ’

48 no_gradients
no_hessians

CASL-U-2017-1445-000 136

Table 8.4: CIPS Cross-Section Sensitivity Study
Max Total Max Total Max Total
Crud Boron Crud Boron Crud Boron

File # diff (%) diff (%) File # diff (%) diff (%) File # diff (%) diff (%)

1 −0.03 0.24 34 −0.09 0.60 67 0.16 0.35
2 0.15 0.11 35 −0.20 −0.03 69 −0.04 −0.06

3 −0.05 −0.10 36 0.20 0.33 70 0.15 0.46
4 −0.20 −0.71 37 0.16 0.28 71 0.07 0.40
5 0.10 0.42 38 −0.31 −0.58 72 0.00 −0.01

6 −0.04 −0.56 39 0.08 0.45 73 −0.19 −0.38

7 −0.05 0.34 40 −0.04 0.88 74 0.23 0.28
8 0.07 0.21 41 −0.45 0.33 75 −0.12 −0.38

9 −0.11 0.36 42 −0.44 −0.18 76 −0.04 0.74
10 −0.08 −0.27 43 0.34 1.12 78 0.19 0.30
11 −0.01 0.48 44 −0.27 −0.09 79 −0.39 −0.49

12 0.09 0.40 45 0.19 0.58 80 −0.02 1.08
13 −0.14 0.46 46 0.00 0.21 81 −0.06 0.63
14 −0.19 0.34 47 −0.14 −0.67 82 −0.10 −0.76

15 0.18 0.81 48 −0.37 0.16 83 −0.15 −0.31

16 −0.44 −0.76 49 −0.08 1.15 84 0.11 0.39
17 −0.31 −0.29 50 −0.24 −0.37 85 0.11 −0.04

18 −0.12 0.25 51 0.13 0.14 86 −0.15 0.20
19 0.08 −0.69 52 −0.23 −0.10 87 −0.42 −0.42

20 −0.29 −0.89 53 0.14 0.95 88 −0.25 −1.51

21 −0.25 0.12 54 −0.29 −0.21 89 0.03 0.26
22 −0.49 −0.14 55 0.28 0.69 90 −0.18 0.22
23 0.22 0.79 56 −0.20 −0.27 91 −0.38 0.09
24 −0.05 −0.37 57 −0.36 0.56 92 −0.11 0.39
25 −0.02 0.21 58 0.19 0.37 93 0.10 0.36
26 0.06 0.18 59 0.41 0.78 94 0.01 −0.35

27 0.24 0.37 60 0.15 0.76 95 0.08 1.08
28 −0.44 −0.16 61 0.03 0.05 96 −0.28 −0.36

29 0.22 0.04 62 −0.53 −0.36 97 −0.43 −0.23

30 −0.70 −0.78 63 0.01 −0.28 98 −0.10 1.04
31 −0.54 −0.39 64 −0.03 0.32 99 −0.01 0.05
32 0.00 0.27 65 0.00 0.13 100 −0.52 −0.37

33 −0.06 −0.05 66 0.10 −0.01

In addition to the random sampling studies, we also generated 159 Latin hypercube samples to
give space-filling coverage of the uncertain parameter distributions for the purpose of constructing
surrogate models to compare with direct computation in the ensuing uncertainty quantification
studies.

CASL-U-2017-1445-000 137

Table 8.5: CIPS UQ parameters
Parameter Value Distribution

+STATES/State_1/tinlet 291.33 ± 1.39 Normal
+STATES/State_1/pressure 15.513 ± 0.241 Normal

*CORE/rated_power 1.0 ± 2% Normal
*CORE/rated_flow 88.79 ± 2% Normal

k_Bthresh 1.0 ± 1% Uniform
k_Cpor 1.0 ± 1% Uniform

k_crud_solid 1.0 ± 1% Uniform
k_delta_r 1.0 ± 1% Uniform

k_fac 1.0 ± 1% Uniform
k_Hc 1.0 ± 1% Uniform
k_kp2 1.0 ± 1% Uniform
k_mit0 1.0 ± 1% Uniform
k_Nc 1.0 ± 1% Uniform
k_rc 1.0 ± 1% Uniform

k_Tsat 1.0 ± 1% Uniform

8.4 Wilks Uncertainty Quantification

Uncertainty quantification based on Wilks sampling essentially involves determining the number of
independent samples needed to make specific guarantees regarding one-sided or two-sided bound
coverage of a statistical population of interest with an accompanying level of confidence. For ex-
ample, the classic 95/95 Wilks analysis requires 59 samples to guarantee with 95% confidence that
the 95% quantile is bounded by the largest response value in the 59 samples. This represents a one-
sided Wilks analysis which can be extended to a two-sided analysis pertaining to a 95% probability
interval being bounded both below and above by the smallest and largest responses in the samples,
respectively. This comes with the added cost of more required samples, e.g. 93 samples for two-
sided 95/95 Wilks. Finally, the order of the analysis can be increased. This expands the statement
pertaining to the largest sample value (or smallest and largest for two-sided) to the largest r values
where r is the order of analysis.

For purposes of demonstrating and validating Wilks-based sampling, we use Dakota and an ad
hoc approach to import the collection of 799 random samples and generate the probability levels
shown in Table 8.6 for a one-sided first-order Wilks baseline. All of the probability levels in the table
for each quantity of interest have confidence levels of 99.9999% or higher and provide estimates of
true quantile values for comparisons with Wilks sampling based on more typical sample sizes.

To demonstrate Wilks UQ for the single assembly CIPS problem, we perform a series of studies
to challenge the validity of the guarantees associated with Wilks sampling. Specifically, we use
Dakota to determine the number of random samples needed to represent the probability levels
in Table 8.6 with 95% confidence. We then randomly sample this number of responses from the
collection of 799 samples without replacement. We repeat this process a total of 1000 times and
compute the fraction of samples in which the Wilks bound represents a maximum value for the
quantity of interest exceeding the value reported in Table 8.6 at the same probability level. The
resulting percentages are summarized in Table 8.7. In each case considered, the claimed theoretical
confidence is achieved empirically.

CASL-U-2017-1445-000 138

Table 8.6: Wilks First-Order, One-Sided Probability Levels with > 99.9999% Confidence Level
Probability Max Crud Total

Level Thickness Boron

0.70 112.22 7.4348e+04
0.75 127.33 9.1038e+04
0.80 138.47 1.0113e+05
0.85 149.74 1.1896e+05
0.90 164.77 1.3816e+05
0.95 179.82 1.6346e+05

Table 8.7: Numerical Validation of Wilks Sampling
Probability Theoretical Required Computed Computed

Level Confidence Samples Confidence Confidence
Max Crud Total Boron

0.70 0.95 9 0.962 0.956
0.75 0.95 11 0.959 0.956
0.80 0.95 14 0.974 0.973
0.85 0.95 19 0.952 0.959
0.90 0.95 29 0.960 0.959
0.95 0.95 59 0.953 0.957

Another useful aspect of Wilks UQ lies in being able to determine the possible order given a
specified number of samples. Table 8.8 shows the orders possible near our current budget of 799
samples. This table indicates that for 799 samples, a 95/95 one-sided bound can be achieved using a
30th order Wilks analysis, while for a 99/99 one-sided bound this is reduced to second order Wilks.
With this information, Wilks upper bounds for these cases derived from direct calculation and from
constant trend Gaussian process (GP) surrogates are also provided in Table 8.8.

Table 8.8: Wilks One-Sided Orders for Given Sample Sizes
Probability Confidence Required Direct GP Direct GP

Level Level Order Samples Max Crud Max Crud Total Boron Total Boron

0.95 0.95 29 763
0.95 0.95 30 786 183.79 182.73 1.7357e+05 1.7037e+05
0.95 0.95 31 809
0.99 0.99 1 459
0.99 0.99 2 662 214.13 204.92 2.4434e+05 2.0840e+05
0.99 0.99 3 838

For the 95/95 Wilks analysis, the surrogate results are within 0.6% and 1.8% of the direct
calculation results for maximum assembly crud thickness and total boron, respectively. Both the
surrogate and direct results are conservative for both QoIs, as seen by comparing them with the
0.95 probability level results in Table 8.6. The discrepancies between surrogate and direct results
jump to 4.3% and 14.7% in the 99/99 Wilks analysis. This likely occurs because for QoIs monotonic

CASL-U-2017-1445-000 139

with respect to parameter variations, extreme values will be found towards boundaries of the input
domain. However, GP surrogates tend to perform worse in such regions often leading to larger
biases and uncertainties. Unfortunately, more stringent coverage and confidence requirements are
precisely the scenarios in which use of surrogates is desirable due to the increased sample size
requirements of conducting such Wilks analyses. One possible solution, if the code allows, is to
construct surrogates on a larger input domain than required by the input distributions. This will
allow for improved surrogate quality in the region of input space of greatest relevance as defined by
the input distributions. This approach is more easily implemented when Wilks analysis is applied
after Bayesian calibration, as the calibration distributions will generally be restricted to a region
of input space much smaller in volume than the domain in which the code is robust to input
perturbations.

Listing 8.2 shows the Dakota input file used to construct the GP surrogates for use in the Wilks
analyses reported above. The file dakota_pstudy.dat (line 32) contains the results of running
VERA on the 159-run Latin hypercube sample mentioned in the previous section, used as the
training sample for building the surrogates. The file cips_val_des.dat (line 19) contains the
799-run Monte Carlo sample used in the Wilks analyses reported above. Surrogate predictions
of maximum assembly crud thickness and total boron are written to the file cips_gp_evals.dat
(line 7). The cross-validation RMSE values for the GP surrogate are approximately 2.5% of the
observed ranges in both QoIs, while the validation RMSE values (computed on the 799-run Monte
Carlo sample) are significantly higher at approximately 11.5%. This validation RMSE is greater
than generally desired, and its effects are seen in the 99/99 Wilks results comparisons between
surrogate and direct computations as discussed above. This stresses the importance of collecting
a sufficient number of validation samples to test surrogate quality prior to using a surrogate in
follow-on analyses.

CASL-U-2017-1445-000 140

Listing 8.2: Dakota input file for construction of Gaussian process surrogates used in Wilks analyses.
1 # Build and evaluate a Gaussian process emulator of VERA output
at a user specified set of points

3

environment
5 method_pointer = ’EvalSurrogate ’

tabular_graphics_data
7 tabular_graphics_file = ’cips_gp_evals.dat ’

9 # Method to perform evaluations of the emulator

11 method
id_method = ’EvalSurrogate ’

13 model_pointer = ’SurrogateModel ’

15 # Verbose will show the type form of the surrogate model
output verbose

17

list_parameter_study
19 import_points = ’cips_val_des.dat ’

21 # Surrogate model specification
model

23 id_model = ’SurrogateModel ’
surrogate global

25 # GP model
gaussian_process surfpack

27 trend
constant

29 # compute and print diagnostics after build
metrics ’rsquared ’ ’root_mean_squared ’

31 press
import_points = ’dakota_pstudy.dat ’

33

variables
35 uniform_uncertain 15

lower_bounds 287.0690 14.58013 0.9291875 0.9672338 0.99
37 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

0.99 0.99
39 upper_bounds 295.2817 16.25264 1.0694308 1.0284815 1.01

1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
41 1.01 1.01

descriptors ’STATES/State_1/tinlet ’ ’STATES/State_1/pressure ’
43 ’*CORE/rated_power ’ ’*CORE/rated_flow ’

’k_Bthresh ’ ’k_Cpor ’ ’k_crud_solid ’ ’k_delta_r ’
45 ’k_fac ’ ’k_Hc ’ ’k_kp2 ’ ’k_mit0 ’ ’k_Nc ’ ’k_rc ’

’k_Tsat ’
47

responses
49 response_functions = 2

descriptors = ’max_crud_thickness ’ ’total_boron ’
51 no_gradients

no_hessians

CASL-U-2017-1445-000 141

Chapter 9

Design With Hi2Lo Framework

A primary function of the Hi2Lo framework is to employ synthetic data generated using validated
high-fidelity codes to calibrate closure relations or tuning parameters in low-fidelity codes in regimes
for which experimental data are unavailable. The framework employs a mutual information-based
design framework [32], summarized in Section 9.1, to determine where in the design space to evaluate
high-fidelity codes to gain the most information when calibrating parameters. Although this chapter
focuses primarily on synthetic data generated using high-fidelity codes, the framework is equally
applicable to experimental designs and physical data, or a hybrid of high-fidelity synthetic data and
physical data.

The initialization, calibration, and design steps of the Hi2Lo process are summarized in Fig-
ure 9.1, with additional details provided in Section 9.1.

1

Hi2Lo Algorithm

Initialization

• Initialize Lo and Hi models
• Create initial data set

• User-provided or LHS
• Possible designs {ξn}

• User-provided or LHS
• Initial Bayesian calibration

Design Selection

• Sample posterior πpost
For each design ξn :
• Compute MI for ξn
• Find ξ* that maximizes

mutual info

Bayesian update

• Run Hi(ξ*) and update data vector
• Perform new Bayesian calibration

Evaluate stopping criterion

• Relative change in mutual
information sufficiently small

• Number of possible candidates
equals 0

• Maximum number of function
evaluations reached

If not satisfied

Kathryn MaupinFigure 9.1: Initialization, calibration, and design steps in the mutual information-based design
framework.

CASL-U-2017-1445-000 142

In this chapter, the Hi2Lo framework is demonstrated to calibrate the turbulent mixing param-
eter β in the low-fidelity COBRA-TF subchannel code using data generated from the high-fidelity
STAR-CCM+ CFD code. The application setting in which this demonstration is conducted was
described in Section 2.5. Section 9.2 shows how Dakota runs the Hi2Lo process in an offline mode,
which is required to conduct parameter calibration for this application. Dakota also supports an on-
line mode that automatically executes the low- and high-fidelity models as needed for each iteration,
without user intervention.

9.1 Mutual Information-Based Design

The computational cost of generating STAR-CCM+ simulation data precludes comprehensive cov-
erage of the complete design space. Furthermore, computational complexity prohibits the use of
STAR-CCM+ in coupled multi-physics packages for performing full-core simulations. Here we sum-
marize the use of mutual information-based experimental design to specify where in the design
space to run the high-fidelity code STAR-CCM+ to optimally inform parameters (e.g., β) in the
low-fidelity code COBRA-TF.

Given a set of observations Dn−1 = {d̃1, d̃2, . . . , d̃n−1} of the high-fidelity code, we seek a design
or evaluation strategy ξn ∈ Ξ so that uncertainty in low-fidelity model parameters θ ∈ Rp is reduced
when the model is re-calibrated using a new high-fidelity data point d̃n. Here Ξ designates the set
of possible evaluation strategies or experimental conditions. Since d̃n has not been observed when
we make a decision regarding the choice of ξn, we employ predictions dn provided by the statistical
model,

dn = d`(θ, ξn) + εn(ξn) , (9.1)

to determine ξn, where d`(θ, ξn) is the low-fidelity model evaluated at parameter setting θ and εn(ξn)
is a random observation error inferred from the calibration analysis.

The change in knowledge about the model parameters, once new synthetic or experimental data
d̃n has been collected, is given by Bayes’ rule

p(θ|Dn) =
p(d̃n|θ,Dn−1, ξn) p(θ|Dn−1)

p(d̃n|Dn−1, ξn)

for the augmented data set Dn = {d̃n, Dn−1}, where p(θ|Dn−1) denotes the prior distribution based
on available data Dn−1, p(d̃n|θ,Dn−1, ξn) is the conditional likelihood which combines information
provided by the model and available data Dn−1, p(d̃n|Dn−1, ξn) is the marginal likelihood of new
data d̃n based on available dataDn−1, and p(θ|Dn) denotes the posterior distribution. This posterior
distribution is not generally available analytically, but can be sampled using techniques described
in Section 6.2.

The goal in experimental design is to optimize the information provided by an experiment or
high-fidelity observation d̃n based on the design ξn. Because our objective is to determine the
distribution p(θ|Dn) = p(θ|d̃n, Dn−1) of the model parameters θ from the calibration of our low-
fidelity model with data d̃n, using as few experiments as possible, the strategy upon which we
base our design decision should be chosen according to the amount of information provided by the
proposed data as a result of measuring under design conditions ξn.

As detailed in [32], the optimal design ξ∗n maximizes the mutual information

I(θ; dn|Dn−1, ξn) =

∫
D

∫
Ω
p(θ|dn, Dn−1, ξn) log

p(θ|dn, Dn−1, ξn)

p(θ|Dn−1)
dθ p(dn|Dn−1, ξn) ddn ,

CASL-U-2017-1445-000 143

Algorithm 1 Design Implementation

(1) Define N , the number of samples to be used in the kNN algorithm.

(2) Initialize a list of pre-existing high-fidelity data, Dr = [(ξ1, d̃1), (ξ2, d̃2), ..., (ξr, d̃r)].

(3) Define the list of possible design conditions, Ξ = [ξr+1, ξr+2, ..., ξs].

(4) If r ≥ 1, run the Dakota-QUESO DRAM algorithm to construct a chain {θi}Ni=1 of size p×N
from the prior distribution p(θ|Dr), where p is the number of parameters. If r = 0; that is,
there are no pre-existing data, construct a chain of size p×N by sampling a proper prior p(θ)
of choice.

(5) Send the chain {θi} and corresponding synthetic data simulated from (9.1) to the kNN algo-
rithm.

(6) The kNN algorithm returns a single design condition ξn ∈ Ξ. Append this value and the
corresponding high-fidelity prediction d̃n from (9.2) evaluated at ξn to the previous data list
to obtain

Dr+1 = [(ξ1, d̃1), (ξ2, d̃2), ..., (ξr, d̃r), (ξn, d̃n)] .

(7) Set r = r+ 1 and repeat steps 3-6 until all designs are used or a user-specified error tolerance
is met.

which is the expected information gain in model parameters θ over new data predictions dn; that
is,

ξ∗n = arg max
ξn∈Ξ

I(θ; dn|Dn−1, ξn) .

The high-fidelity code is then evaluated using the design condition ξ∗n, and the resulting datum d̃n
is obtained from

d̃n = dh(ξ∗n) + ε̃n(ξ∗n) , (9.2)

where dh(ξ∗n) is the high-fidelity model evaluation and ε̃n(ξ∗n) is a random observation error rep-
resenting uncertainties in the physical system. The resulting datum d̃n is used to recalibrate the
model parameters θ and continue the process.

Dakota uses kNN (kth-Nearest Neighbor) techniques [31] to approximate the mutual informa-
tion, and the design implementation is summarized in Algorithm 1.

9.2 Dakota Implementation

For this application scenario and geometry, COBRA-TF simulations completed on the order of
approximately five minutes. While this is much less computationally expensive than the hour it
took to run the same geometry and flow conditions in STAR-CCM+, the computational time adds up
for the Bayesian calibration and design optimization steps. On the order of 104 runs were needed
for each Bayesian calibration, therefore building a surrogate of the COBRA-TF simulation was
necessary. The Gaussian process surrogate completed a run within seconds versus the five minutes
it took to run a simulation in COBRA-TF. Section 4.2 describes Gaussian process surrogates,
including how to build and predict with them using Dakota. For this application, 1,000 Latin
hypercube samples were used to build the surrogate and an independent set of 300 Latin hypercube

CASL-U-2017-1445-000 144

samples were used to validate surrogate quality. The difference between the surrogate-calculated
and COBRA-TF outlet temperatures for each of the validation test conditions was less than 1.8%,
with the differences for most of the tests being within 0.02-0.6%. Additional discussion and results
regarding surrogate performance in the context of this application can be found in [17].

Listings 9.1 and 9.2 together depict the Dakota input file hi2lo.in used to run the Hi2Lo
process in an offline mode. When this file is run, Dakota will first calibrate the model parameters
θ using available input data, and then iterate through the supplied candidate list Ξ of design
(configuration) variable settings to select the design associated with the largest estimated mutual
information between calibrated parameters and predicted high-fidelity data. Dakota outputs the
results of parameter calibration and the optimal configuration setting prior to terminating. The
process continues by running the high-fidelity code offline at this optimal design, generating new
data according to (9.2), and then running a modified version of this Dakota input file.

The method block beginning at line 5 of Listing 9.1 specifies the low-fidelity model parameter
calibration algorithm as well as the design candidates Ξ to be considered for mutual information
optimization. The keyword experimental_design (line 14) announces to Dakota that this input file
describes a Hi2Lo analysis. Line 19 redirects QUESO to the HIERARCH model block in lines 21-25.
The Dakota keyword surrogate with option hierarchical (line 24) indicates that a low-fidelity
model will be used as a surrogate for a high-fidelity model. These models are identified by the option
ordered_model_fidelities (line 25), which assumes the models are listed from lowest to highest
fidelity. Hence the low- and high-fidelity models in this analysis are tagged by the identifiers LF and
HF, respectively. Since the low-fidelity model is the object of calibration, QUESO thus interfaces with
the model defined in the LF model block beginning on line 27. Line 9 indicates the DRAM algorithm
is used to sample from the posterior distribution of the calibration parameter β. Posterior samples
are output to the file ctf_mcmc_1.dat (line 8). The keyword initial_samples (line 15) specifies
the number of initial experiments used for parameter calibration. The keyword num_candidates
(line 16) sets the number of candidate design settings in Ξ. The option max_hifi_evaluations =
0 (line 18) instructs Dakota to terminate without running the high-fidelity model after finding an
optimal design from among the candidates supplied.

Of additional note with regard to the calibration is the option chain_samples = 18750 in line
11 of Listing 9.1. For the Hi2Lo process, Dakota removes the first 20% of the chain as burn-in. The
remaining samples are filtered prior to data prediction via (9.1) and mutual information estimation.
If there are 15,000 or fewer remaining samples, the subsampling interval is 3. If there are more
than 15,000 samples, the subsampling interval is the greatest integer of the remaining sample count
divided by 5,000. Therefore, 18,750 chain samples is the minimum requirement to achieve the
desired 5,000 filtered samples for mutual information estimation.

The model block beginning at line 27 of Listing 9.1 provides information about how inputs to the
low-fidelity model are mapped to responses, as indicated by id_model = ’LF’ (line 28). Lines 29-34
specify that the low-fidelity model is a Gaussian process surrogate having constant trend. The inputs
to this surrogate are specified in the variables block indicated by variables_pointer (line 35), in
this case ALL_VARS. The responses of this surrogate are specified in the responses block indicated by
responses_pointer (line 36), in this case lofi_resp. The keyword actual_model_pointer (line
37) is used in this context to override the default for which inputs are passed to the surrogate. The
override instructions are contained in the model block labelled ALL_VARIABLES_MODEL (beginning on
line 39). This model redirects the variables_pointer (line 42) to the variables block beginning
on line 44 labelled ALL_VARIABLES.

The variables and responses blocks ALL_VARS and lofi_resp begin on lines 63 and 87 of
Listing 9.2, respectively. The inputs are listed in the order they are to be passed to the low-fidelity
model for evaluation. The first input is the calibration parameter β (BETA), followed by the four

CASL-U-2017-1445-000 145

Listing 9.1: Dakota input file for running offline iterations of the Hi2Lo process.
environment ,

2 tabular_data
tabular_data_file = ’ctf_mcmc_1.tab ’ annotated

4

method ,
6 bayes_calibration queso

output silent
8 export_chain_points_file = ’ctf_mcmc_1.dat ’

dram
10 seed = 10001

chain_samples = 18750
12 logit_transform

proposal_covariance prior
14 experimental_design

initial_samples = 1
16 num_candidates = 20

import_candidate_points_file = ’ctf_exp_cand_1.dat ’ freeform
18 max_hifi_evaluations = 0

model_pointer = ’HIERARCH ’
20

model ,
22 id_model = ’HIERARCH ’

variables_pointer = ’ALL_VARS ’
24 surrogate hierarchical

ordered_model_fidelities = ’LF’ ’HF ’
26

model ,
28 id_model = ’LF’

surrogate global
30 import_points = ’ctf_lhs_gp_ff.dat ’ freeform

Gaussian Process (GP) model specification
32 gaussian_process surfpack

trend
34 constant

variables_pointer = ’ALL_VARS ’
36 responses_pointer = ’lofi_resp ’

actual_model_pointer = ’ALL_VARIABLES_MODEL ’
38

model ,
40 id_model = ’ALL_VARIABLES_MODEL ’

single
42 variables_pointer = ’ALL_VARIABLES ’

44 variables ,
id_variables = ’ALL_VARIABLES ’

46 active all
uniform_uncertain = 1

48 upper_bounds 0.012
lower_bounds 0.000

50 descriptors ’BETA ’
continuous_state = 4

52 upper_bounds 2413.62 600.3 22.70000 10.019
lower_bounds 2296.53 459.1 14.59766 3.697

54 descriptors ’ExPRES ’ ’TIN ’ ’GIN ’ ’AFLUX ’

CASL-U-2017-1445-000 146

Listing 9.2: (Continued) Dakota input file for running offline iterations of the Hi2Lo process.
56 model ,

id_model = ’HF’
58 single

interface_pointer = ’hifi_IF ’
60 variables_pointer = ’CONFIG_VARS ’

responses_pointer = ’hifi_resp ’
62

variables ,
64 id_variables = ’ALL_VARS ’

uniform_uncertain = 1
66 upper_bounds 0.012

lower_bounds 0.000
68 descriptors ’BETA ’

continuous_state = 4
70 upper_bounds 2413.62 600.3 22.70000 10.019

lower_bounds 2296.53 459.1 14.59766 3.697
72 descriptors ’ExPRES ’ ’TIN ’ ’GIN ’ ’AFLUX ’

74 variables ,
id_variables = ’CONFIG_VARS ’

76 active state
continuous_state = 4

78 upper_bounds 2413.62 600.3 22.70000 10.019
lower_bounds 2296.53 459.1 14.59766 3.697

80 descriptors ’ExPRES ’ ’TIN ’ ’GIN ’ ’AFLUX ’

82 interface ,
id_interface = ’hifi_IF ’

84 fork
analysis_drivers = ’hifi.py’

86

responses ,
88 id_responses = ’lofi_resp ’

calibration_terms = 36
90 descriptors

’Ts1 ’ ’Ts2 ’ ’Ts3 ’ ’Ts4 ’ ’Ts5 ’ ’Ts6 ’ ’Ts7 ’ ’Ts8 ’ ’Ts9 ’
92 ’Ts10 ’ ’Ts11 ’ ’Ts12 ’ ’Ts13 ’ ’Ts14 ’ ’Ts15 ’ ’Ts16 ’ ’Ts17 ’ ’Ts18 ’

’Ts19 ’ ’Ts20 ’ ’Ts21 ’ ’Ts22 ’ ’Ts23 ’ ’Ts24 ’ ’Ts25 ’ ’Ts26 ’ ’Ts27 ’
94 ’Ts28 ’ ’Ts29 ’ ’Ts30 ’ ’Ts31 ’ ’Ts32 ’ ’Ts33 ’ ’Ts34 ’ ’Ts35 ’ ’Ts36 ’

no_gradients
96 no_hessians

98 responses ,
id_responses = ’hifi_resp ’

100 calibration_terms = 36
descriptors

102 ’Ts1 ’ ’Ts2 ’ ’Ts3 ’ ’Ts4 ’ ’Ts5 ’ ’Ts6 ’ ’Ts7 ’ ’Ts8 ’ ’Ts9 ’
’Ts10 ’ ’Ts11 ’ ’Ts12 ’ ’Ts13 ’ ’Ts14 ’ ’Ts15 ’ ’Ts16 ’ ’Ts17 ’ ’Ts18 ’

104 ’Ts19 ’ ’Ts20 ’ ’Ts21 ’ ’Ts22 ’ ’Ts23 ’ ’Ts24 ’ ’Ts25 ’ ’Ts26 ’ ’Ts27 ’
’Ts28 ’ ’Ts29 ’ ’Ts30 ’ ’Ts31 ’ ’Ts32 ’ ’Ts33 ’ ’Ts34 ’ ’Ts35 ’ ’Ts36 ’

106 calibration_data_file ’ctf_exp_1.dat ’ annotated
num_experiments = 1

108 num_config_variables = 4
variance_type = ’scalar ’

110 no_gradients
no_hessians

CASL-U-2017-1445-000 147

design (configuration) inputs exit pressure (ExPRES), inlet temperature (TIN), inlet mass flow rate
(GIN), and average linear heat rate (AFLUX). Ranges are given in lines 66-67 for BETA and lines 70-71
for the design inputs. BETA is designated as uniform_uncertain (line 65), indicating that this input
is assigned a uniform prior distribution on its range when it is being calibrated in the Hi2Lo process.
The design inputs are designated as continuous_state (line 69), with the Cartesian product of
their ranges defining the continuous design region, of which Ξ must be a subset. The responses are
identified as 36 calibration terms (line 89), namely the 36 subchannel outlet temperatures, labelled
by subchannel (lines 91-94) under the descriptors (line 90) keyword.

The ALL_VARS and ALL_VARIABLES blocks are identical, except for the active all specification
on line 46 of Listing 9.1. This instruction forces all five inputs to be used in surrogate evaluation, as
required in the prediction (9.1) of high-fidelity data. The keyword import_points (line 30) indicates
that the input file ctf_lhs_gp_ff.dat is to be read by Dakota for use in surrogate building. Each
row of this file first provides the input settings ran by COBRA-TF in the order specified by the
ALL_VARS block, followed by the COBRA-TF outputs in the order specified by the lofi_resp block.

The model block beginning at line 56 of Listing 9.2 provides information about how inputs to
the high-fidelity model are mapped to responses, as indicated by id_model = ’HF’ (line 57). The
simplest model type single (line 58) is indicated, which uses a single interface to map variables to
responses. Although the high-fidelity model will not be run as part of this offline Hi2Lo process,
these three blocks are nevertheless required. The interface to the high-fidelity code is specified in
the interface block indicated by interface_pointer (line 59), in this case hifi_IF. The inputs
to the high-fidelity code are specified in the variables block indicated by variables_pointer (line
60), in this case CONFIG_VARS. The responses of the high-fidelity code are specified in the responses
block indicated by responses_pointer (line 61), in this case hifi_resp.

The interface, variables and responses blocks hifi_IF, CONFIG_VARS and hifi_resp begin
on lines 82, 74 and 98 of Listing 9.2, respectively. The analysis_drivers (line 85) points to a
python script hifi.py that interfaces Dakota with the high-fidelity code. Since the high-fidelity
code is not run by Dakota in this offline Hi2Lo process, hifi.py is just an empty file. The inputs are
listed in the order they would be passed to the high-fidelity model were it to be called. The design
inputs are listed in the same order as in the ALL_VARS block, with matching ranges (lines 78-79).
The active state (line 76) instruction indicates that all four design inputs would be passed to the
high-fidelity code were it to be called. The responses are identified as 36 calibration terms (line 100),
namely the 36 STAR-CCM+ channel center temperatures, labelled by corresponding subchannel
(lines 102-105) under the descriptors (line 101) keyword.

The keyword import_candidate_points_file in line 17 of Listing 9.1 indicates that the input
file ctf_exp_cand_1.dat provides the list of candidate design settings Ξ to Dakota for design
optimization. Each row of this file provides the four design settings corresponding to an element of
Ξ in the order specified by the CONFIG_VARS block.

The hifi_resp block also contains information about the data used for low-fidelity model pa-
rameter calibration. The keyword calibration_data_file (line 106) specifies that the input file
ctf_exp_1.dat contains the calibration data. Each row of this file contains a label, followed by
values of the num_config_variables (line 108) configuration variables passed to STAR-CCM+, fol-
lowed by the calibration_terms (line 100) responses generated by STAR-CCM+ and application
of (9.2), and ending with observational errors represented as variances corresponding to each of the
responses (as dictated by the variance_type = ’scalar’ (line 109) option). The number of rows
in the calibration data file is specified by num_experiments (line 107).

This iteration of the Hi2Lo process utilized one of the 21 tests in the Westinghouse suite described
in Section 2.5 for initial calibration of BETA. The required data from this test was incorprated into the
ctf_exp_1.dat file. The configuration settings corresponding to the remaining 20 tests in this suite

CASL-U-2017-1445-000 148

formed the candidate set Ξ and constitute the input file ctf_exp_cand_1.dat. In general, an arbi-
trary candidate set may be used for the Hi2Lo process as long as the high-fidelity code could poten-
tially run each design point in the set. The output file ctf_mcmc_1.dat contains the posterior sam-
ples of BETA from the calibration. Dakota also outputs the file experimental_design_output.txt,
which contains the optimal design point as well as its associated mutual information value (approx-
imately 0.67444) from this iteration.

The Hi2Lo process continues to the second iteration by running STAR-CCM+ offline on the
optimal design point found from the first iteration, perturbing the result according to (9.2), and
appending the calibration data file from the first iteration with the required data and saving the
result as ctf_exp_2.dat. This optimal design point is also removed from the candidate list and
the result saved as ctf_exp_cand_2.dat. The following modifications are then made to hi2lo.in,
with line numbers referring to Listings 9.1 and 9.2:

1. All filenames containing _1 are changed to contain _2.

2. The seed (line 10) is changed.

3. initial_samples = 2 (line 15)

4. num_candidates = 19 (line 16)

5. num_experiments = 2 (line 107)

This process was continued until the candidate set Ξ was exhausted. Figure 9.2(a) shows the BETA
posterior distribution after iterations 1-10; for example, “1st Point" resulted from the first iteration.
Figure 9.2(b) shows the BETA posterior distribution after iterations 11-20. The estimate of BETA
(posterior mean) obtained from the last iteration is 0.002881. It is evident that uncertainty in
calibrated BETA decreases substantially from the first to the last iteration. Visually this is observed
by noting the widths of the PDFs decreasing as their heights increase from Figure 9.2(a) to Fig-
ure 9.2(b). Quantitatively the BETA posterior standard deviation decreases by 79.6% throughout the
Hi2Lo process. Figure 9.3 shows the mutual information values associated with the optimal design
point selected at each iteration. Although mutual information is maximized at each iteration, the
estimated mutual information tends to decrease as more data are added to calibrate BETA, a trend
that can be used to stop the Hi2Lo process when it appears that adding new data only provides
diminishing returns for calibrating BETA. Additional analysis of the Hi2Lo process in the context of
this example is provided in [17].

CASL-U-2017-1445-000 149

-2 0 2 4 6 8 10

Beta Value 10 -3

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

K
D

E

11th Point
12th Point
13th Point
14th Point
15th Point
16th Point
17th Point
18th Point
19th Point
20th Point

(a) (b)

Figure 9.2: Kernel density estimates (KDE) of the BETA posterior samples from the Bayesian cali-
bration performed during (a) iterations 1-10, and (b) iterations 11-20 of the Hi2Lo process.

Figure 9.3: Estimated mutual information from each iteration of the Hi2Lo process.

CASL-U-2017-1445-000 150

Appendix A

General Linear Model Verification Test
Suite

This appendix provides additional technical details for the linear model introduced in Section 2.2.
Here we describe in detail a particular class of problems for which results of the QUESO DRAM
or Dakota DREAM sampling algorithm can be verified against analytical solutions. Specifically, we
present standard results for Bayesian analysis of the linear regression model ([12], pp. 233-265). In
linear regression, a N -vector of outputs y is related linearly to functions of inputs x,

y = Gβ + ε ,

where the i-th row of G contains the evaluation of these regression functions at input xi corre-
sponding to the i-th datum yi, β denotes the regression coefficients, and ε denotes the vector of
observational errors. In the following, observational errors will be assumed mean-zero Gaussian,
having variance (1/λ) and possibly correlated with parametric dependencies goverened by a param-
eter φ.

Marginal posterior distributions for β, λ, and φ are derived analytically for three increasingly
challenging verification scenarios: (i) β unknown, (λ, φ) fixed; (ii) (β, λ) unknown, φ fixed; and
(iii) (β, λ, φ) unknown. In the third scenario, the marginal posterior distributions of β, λ, and φ
do not belong to a standard class of probability distributions (such as Gaussian or Gamma, for
example), thus requiring the use of numerical methods such as quadrature to accurately estimate
their normalizing constants.

For each verification scenario, QUESO samples from the applicable marginal posterior distribu-
tions for β, λ, and φ will be compared with the corresponding analytical results. Convergence of
posterior means and other summary statistics to corresponding parameter values assumed for data
generation can also be monitored.

Section A.1 describes how data are simulated and presents the three verification scenarios of
interest with corresponding analytical results for the desired posterior distributions in each scenario.
Section A.2 defines the correlation functions used in the examples of Section 6.2.6. Section A.3
summarizes the hypothesis testing framework based on an energy distance statistic ([51]) used for
verifying that DRAM and DREAM samples are distributed correctly.

A.1 Verification Scenarios

Let εt denote a mean-zero Gaussian stochastic process having covariance function c(t1, t2|φ) =
(1/λ) r(t1, t2|φ), where λ > 0 and r(·, ·|φ) is a correlation function for φ ∈ Φ. We assume the

CASL-U-2017-1445-000 151

following quantities are specified:

1. Nominal parameter settings (β0, λ0, φ0) with β0 ∈ <Nβ , λ0 > 0, and φ0 ∈ int(Φ)

2. Indices {t1, t2, . . . , tN}.

We denote the multivariate Gaussian distribution having location vector µ and covariance matrix
Σ by N (µ,Σ). For specified N , generate a N -vector of errors

(εt1 , . . . , εtN) ∼ N (0N , (1/λ0)R(φ0)) ,

where 0N is theN -vector of zeroes and the (i, j) element of R(φ0) is given by r(ti, tj |φ0). To complete
the data generation process, we sample M -dimensional covariates {X1, . . . XN} independently from
the distribution N (0M , C), where C is a fixed covariance matrix. The i-th datum is calculated as
yti = gT (xi)β0 + εti , where g(·) is a Nβ-dimensional regression function. In vector-matrix form,

y = Gβ0 + ε ,

where

y = (yt1 , yt2 , . . . , ytN)T ,

G = [g(x1) g(x2) · · · g(xN)]T , and

ε = (εt1 , εt2 , . . . , εtN)T .

To generate Ñ additional responses, we sample:

1. {XN+1, . . . , XN+Ñ} independently from the distribution N (0M , C)

2. (εtN+1 , . . . , εtN+Ñ
)T ∼ N

(
0Ñ , (1/λ0)

(
R̃(φ0)− R̄(φ0)R−1(φ0)R̄T (φ0)

))
,

where the (i, j) element of R̃(φ0) is given by r(tN+i, tN+j |φ0), and the (i, j) element of R̄(φ0) is given
by r(tN+i, tj |φ0). Then ytN+i = gT (xN+i)β0 + εtN+i and the matrix-vector form of the augmented
data set follows. Note that this process of conditionally sampling errors preserves the correct joint
disribution of the augmented data vector.

In the following calculations, we assume the regression matrix G is fixed, so this will not be
explicitly denoted in the notation. Although (β, λ, φ) are fixed at (β0, λ0, φ0) to generate data as
above, our statistical analyses will assume some or all of (β0, λ0, φ0) are unknown. The sampling
distribution f(Y |β, λ, φ) of a random data set Y of size N is N (Gβ, (1/λ)R(φ)).

(Case 1.) The first verification scenario assumes that λ and φ are fixed at λ0 and φ0, respectively.
The Bayesian analysis places a prior distribution on β, which is given by the following:

1. π(β) is N (µ0, λ
−1
0 Σ−1).

Let β̂(φ0) =
(
GTR−1(φ0)G

)−1
GTR−1(φ0) y be the generalized least squares estimate of β. The

posterior distribution of β is N
(
µ1(φ0), λ−1

0 Σ1(φ0)
)
, where

Σ−1
1 (φ0) = Σ +GTR−1(φ0)G and

µ1(φ0) = Σ1(φ0)
[(
GTR−1(φ0)G

)
β̂(φ0) + Σµ0

]
.

CASL-U-2017-1445-000 152

A noninformative prior for β, π(β) ∝ 1, results in a posterior distribution of β as above, with

µ1(φ0) = β̂(φ0) and Σ1(φ0) =
(
GTR−1(φ0)G

)−1
. (A.1)

The predictive distribution of Q future responses Ỹ = (Yt̃1 , Yt̃2 , . . . , Yt̃Q)T associated with regres-
sion matrix G̃ = [g(x̃1) g(x̃2) · · · g(x̃Q)]T and the Q-variate error vector ε̃Q = (εt̃1 , εt̃2 , . . . , εt̃Q)T

is N
(
µ̃(φ0), λ−1

0 Σ̃(φ0)
)
, where

µ̃(φ0) = G̃µ1(φ0) + R̄(φ0)R−1(φ0) (y −Gµ1(φ0)) and

Σ̃(φ0) = R̃(φ0)− R̄(φ0)R−1(φ0)R̄T (φ0) + H̃(φ0)Σ1(φ0)H̃(φ0)T

for H̃(φ0) = G̃− R̄(φ0)R−1(φ0)G. Here, the (i, j) element of R̃(φ0) is given by r(t̃i, t̃j |φ0), and the
(i, j) element of R̄(φ0) is given by r(t̃i, tj |φ0).

(Case 2.) The second verification scenario assumes that φ is fixed at φ0. The Bayesian analysis
places a prior distribution on (β, λ), which is given by the following:

1. π(β|λ) is N (µ0, λ
−1Σ−1), and

2. π(λ) is Gamma(a, b).

The posterior distribution of λ is Gamma(a1, b1(φ0)), where

a1 = (2a+N)/2

b1(φ0) =

(
2b+

(
y −Gβ̂(φ0)

)T
R−1(φ0)

(
y −Gβ̂(φ0)

)
+
(
β̂(φ0)− µ0

)T
Σ−1

2 (φ0)
(
β̂(φ0)− µ0

))
/2

for Σ2(φ0) = Σ−1 +
(
GTR−1(φ0)G

)−1.
A noninformative prior for β, π(β) ∝ 1, results in the posterior distribution of λ given above,

with

a1 = (2a+N −Nβ)/2 and b1(φ0) =

(
2b+

(
y −Gβ̂(φ0)

)T
R−1(φ0)

(
y −Gβ̂(φ0)

))
/2 . (A.2)

A noninformative prior for λ, π(λ) ∝ (1/λ), results from taking a = b = 0. Note that π(β, λ) ∝ (1/λ)
is the Jeffreys noninformative prior.

We denote the d-variate t distribution having ν degrees of freedom, location vector µ, and scale
matrix Σ by Td(ν, µ,Σ). The mean of this distribution is µ if ν > 1 and the covariance matrix of
this distribution is νΣ/(ν − 2) if ν > 2. The posterior distribution of β is given by

π(β|y) is TNβ (2a1, µ1(φ0), b1(φ0)Σ1(φ0)/a1) . (A.3)

For the noninformative prior π(β) ∝ 1, the quantities µ1(φ0), Σ1(φ0) from (A.1) and a1, b1(φ0)
from (A.2) are utilized (A.3) for the posterior distribution of β, where again a = b = 0 for π(λ) ∝
(1/λ).

The predictive distribution of Ỹ is given by

π(Ỹ |y) is TQ
(

2a1, µ̃(φ0), b1(φ0)Σ̃(φ0)/a1

)
.

CASL-U-2017-1445-000 153

(Case 3.) The third verification scenario allows φ to be random. The Bayesian analysis places a
prior distribution on (β, λ, φ), which is given by π(β, λ, φ) = π(β, λ)π(φ), where π(β, λ) is specified
as in the previous scenario. The form of π(φ) used in verification testing will be provided in the
following section. Our goal in this scenario is to numerically approximate the marginal posterior
distributions of λ and β:

π(λ|y) =

∫
Φ
π(λ|y, φ)π(φ|y) dφ

π(β|y) =

∫
Φ
π(β|y, φ)π(φ|y) dφ .

The distributions π(λ|y, φ) and π(β|y, φ) are given analytically in the previous scenario. That leaves
π(φ|y), which is given as

π(φ|y) ∝ π(φ)

b1(φ)a1 det (R(φ))1/2 det (GTR−1(φ)G)1/2 det (Σ2(φ))1/2
.

Quadrature is used to compute the normalizing constant

c(y) =

∫
Φ

π(φ) dφ

b1(φ)a1 det (R(φ))1/2 det (GTR−1(φ)G)1/2 det (Σ2(φ))1/2

so that

π(φ|y) =
c−1(y)π(φ)

b1(φ)a1 det (R(φ))1/2 det (GTR−1(φ)G)1/2 det (Σ2(φ))1/2
.

For the noninformative prior π(β) ∝ 1,

π(φ|y) =
c−1(y)π(φ)

b1(φ)a1 det (R(φ))1/2 det (GTR−1(φ)G)1/2

for
c(y) =

∫
Φ

π(φ) dφ

b1(φ)a1 det (R(φ))1/2 det (GTR−1(φ)G)1/2
,

where a1, b1(φ) are taken from (A.2) and a = b = 0 for π(λ) ∝ (1/λ).
The predictive distribution

π(Ỹ |y) =

∫
Φ
π(Ỹ |y, φ)π(φ|y) dφ

of Ỹ can also be numerically approximated.

A.2 Correlation Functions

Our verification examples consider two specifications of the correlation function r(t1, t2|φ):

1. r(ti, tj) = δti,tj

2. r(ti, tj |φ) = φ|i−j|, −1 < φ < 1.

CASL-U-2017-1445-000 154

The first case describes the standard regression setting in which errors are uncorrelated. The second
case describes an AR(1) correlation structure for errors associated with observations indexed by
time. The pairwise correlation between errors decays as a function of separation in time.

Both correlation functions admit explicit expressions for the inverse R−1(φ) and determinant
det (R(φ)),

1. IN and 1

2. 1
1−φ2

1 −φ 0 0 · · · 0 0

−φ 1 + φ2 −φ 0 · · · 0 0

0 −φ 1 + φ2 −φ · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 1 + φ2 −φ
0 0 0 0 · · · −φ 1

and (1− φ2)N−1 ,

where IN is the N ×N identity matrix.

A.3 Energy Test of Equal Distributions

We utilize a nonparametric multisample test for equality of multivariate distributions based on an
energy statistic [51] as a quantitative technique for stochastic verification of posterior sampling
methods. Although the test can be applied to an arbitrary number of sample sets, we restrict our
attention to the case of two sample sets, S1 and S2. In the context of stochastic verification, we take
S1 to be a sample derived from the target distribution of the sampling method we are testing, and
S2 to be a sample taken from the reference analytical posterior distribution. The null hypothesis of
this test is that the two distributions are equal, and it is based on the e-distance statistic e(S1, S2)
defined by

e(S1, S2) =
n1n2

n1 + n2
[2M12 −M11 −M22] ,

where n1 and n2 are the sizes of sample sets S1 and S2 respectively,

Mij =
1

ninj

ni∑
p=1

nj∑
q=1

||Yip − Yjq|| ,

|| · || denotes Euclidean norm, and Yip denotes the p-th observation in the i-th sample.
The null distribution of the e-distance statistic will not generally be available in closed form,

and so the energy test is implemented as a permutation test. We take extremely small values of the
resulting estimated p-value, say below 0.01, as strong evidence that the two distributions are not
equal.

We require samples from the reference analytical posterior distribution for comparison with
MCMC samples obtained from Dakota. To this end, we note that

π(β, λ, φ|y) = π(β|y, λ, φ)π(λ|y, φ)π(φ|y) .

Given φ (sampled from π(φ|y) in Case 3 and fixed at φ0 in Cases 1 and 2), λ is sampled from its
(conditional) posterior Gamma distribution having parameters specified in the discussion of Case 2
in Appendix A.1. Finally, β is sampled from π(β|y, λ, φ), which is a N (µ1(φ), (1/λ)Σ1(φ)) distri-
bution. The resulting sample (β, λ, φ) is therefore generated from the joint distribution π(β, λ, φ|y)
as desired.

CASL-U-2017-1445-000 155

Appendix B

Procedure for Running COBRA-TF
Studies

This section provides a brief description of how to perform the COBRA-TF studies described in
Chapter 7 with the model detailed in Section 2.3 on one of the CASL compute machines using the
VERA software environment. This assumes that the steps necessary to log on to one of the various
CASL machines, e.g. u233, u235, boris, natasha, anasova, etc., have been successfully completed.

The first step to create a VERA project is to clone (e.g. checkout) the top-level VERA source
code,

git clone git@casl-dev:/VERA

You next clone all the CASL repositories you have access to using a VERA utility clone_vera_repos.py
which keys off of your particular group memberships and access permissions, e.g.

cd VERA
./clone_vera_repos.py

Much more information on setting up a VERA project can be found here: https://vminfo.casl.
gov/trac/casl_phi_kanban/wiki/CASLDevLinuxDevEnv#vera_dev_quickstart.

For the Cobra-TF studies of Chapter 7, you need the following project directory structure at a
minimum:

VERA
|-- COBRA-TF
|-- DakotaExt
| |-- Dakota
|-- DataTransferKit
|-- PSSDriversExt
|-- TeuchosWrappersExt
|-- TriBITS
|-- Trilinos
|-- VERAInExt
|-- VUQDemos

After the project has been created, it can be built in a variety of ways. Perhaps the easiest approach
and the one guaranteed to work is to make use of the VERA checkin-test utility script. This should
be done within a build directory separate from the project source directory created above. For
example, to build the default (MPI-based) version of the project the steps shown in Listing B.1
would be followed.

CASL-U-2017-1445-000 156

https://vminfo.casl.gov/trac/casl_phi_kanban/wiki/CASLDevLinuxDevEnv#vera_dev_quickstart
https://vminfo.casl.gov/trac/casl_phi_kanban/wiki/CASLDevLinuxDevEnv#vera_dev_quickstart

Listing B.1: Steps to build a CASL VUQ project on one of the CASL machines.
1

Create a build directory
3 mkdir -p CASL_BUILDS/VUQ_BUILD
cd CASL_BUILDS/VUQ_BUILD

5

Create a link to the checkin -test utility script in the source project directory
7 ln -s ~/VERA/cmake/ctest/drivers/fissile4/checkin -test -vera.sh

9 # Invoke the script to build an optimized serial version of the project
./checkin -test -vera.sh --extra -repos -type=Nightly --test -categories=HEAVY \

11 --enable -packages=VUQDemos --local -do -all

This will perform a sequence of steps which include configuring (i.e. creating Makefiles), building (i.e.
invoking make) and testing the project (i.e. invoking ctest). The option test-categories=HEAVY
enables the most comprehensive testing and can include some tests that require on the order of
an hour to complete. A list of tests can be obtained by going into the subdirectory corresponding
to the particular build, e.g. MPI_RELEASE_DEBUG_SHARED, and invoking ctest -N, and
a particular test can be run by specifying its name or regular expression encompassing its name,
e.g. ctest -R single_assembly. If the project source directory is created in a location other than
the top-level user home directory, i.e. ~/VERA, then its location must be specified in the invocation
of the checkin-test script by adding the option, –src-dir=$PATH_TO_TOP_LEVEL_VERA_DIR, and
the path must be absolute, e.g. /home/$USER_ID/Projects/CASL/VERA. Finally, it should be
noted that the checkin-test utility script currently requires that it be invoked from the second
level of a build directory tree. Any build directory structure of the following form would work,
~/SOME_LEVEL_1_DIR/LEVEL_2_DIR with the script residing and invoked from the LEVEL_2_DIR.

CASL-U-2017-1445-000 157

Appendix C

ROMUSE2.0 User Manual

C.1 Introduction

ROMUSE (Reduced Order Modeling Based Uncertainty/Sensitivity Estimator) is a C++ based
analysis code that is designed mainly to be used in conjunction with reactor analysis codes (e.g.
reactor core simulators) to perform different forms of mathematical analysis on the simulator of
interest (e.g. uncertainty quantification, surrogate model construction, and subspace analysis).
ROMUSE interfaces with the I/O of the simulator of interest such that the I/O data are wrapped,
modified and then used in ROMUSE modules to make conclusions about the problem of interest
(refer to Figure C.1).

Figure C.1: ROMUSE General Scheme

Currently, ROMUSE is compatible with SCALE6.1, VERA-CS and any code with Hierarchical
Data Format 5 (HDF5) I/O format. Depending on the simulator of interest, the ROMUSE input
card requires various types of information. Table C.1 summarizes the main input card parameters.
ROMUSE can read, manipulate and write input parameters. Moreover, response level analysis is

CASL-U-2017-1445-000 158

possible by executing the simulator of interest and then interpreting and analyzing the responses of
interest.

In order to provide flexibility in using ROMUSE, it can be used at different levels (refer to
Figure C.2); for example, it can be used to generate perturbed cases only, without running the
simulator of interest (refer to the next section). Next, the user can command ROMUSE to run the
simulator and collect the corresponding responses of interest. Finally, ROMUSE can be interfaced
with Dakota 6.6 (6.1+) [1] and have access to the algorithms therein. In the latter case ROMUSE
will compute the quantities needed for the problem of interest and provide them to Dakota.

Figure C.2: ROMUSE Execution Levels

ROMUSE provides various sequences, each of which has different parameters and performs
different algorithms or execution flows. Table C.1 summarizes the main input card parameters with a
brief description. These parameters will be discussed further in subsequent sections. Comprehensive
Uncertainty Quantification (UQ) studies can be performed via ROMUSE. Several UQ algorithms
are available:

1. Brute force Monte Carlo UQ.

2. Karhunen-Lo‘eve (KL) expansion based UQ (might appear as the Multi-Physics Efficient
Range Finding Algorithm (MP-EUQ) in the case of coupled multi-physics codes).

3. Surrogate Based UQ (SBUQ).

4. Dakota based UQ and DA studies.

For more information about the first 3 options, refer to [28]. Options 2-4 require performing dimen-
sion reduction, which can be computed via ROMUSE, utilizing the efficient algorithms for single
physics and multi-physics dimension reduction detailed in [28]. These algorithms are then used to
perform dimension reduction on the uncertainty source space (i.e. revealing the active or important
degrees of freedom (DoFs)). Once the active DoFs are determined they can be used to perform
linear KL-based UQ, surrogate construction, or communicated to Dakota for additional analyses.
Note that the material (nuclei) and reaction IDs used throughout ROMUSE follow the notation
used by the SCALE covariance and cross-section library [58].

Table C.1: ROMUSE Input Card Main Parameters

Parameter Description
SEQUENCE= The sequence name:

X-ROMUSE-UQ; X={GMODEL,SCALE,VERA}
X-ROMUSE-RFA; X={GMODEL,SCALE,VERA}
ROMUSE-EXE;
ROMUSE-RESPONSES;
ROMUSE-DAKOTA;

CASL-U-2017-1445-000 159

Ref: Directory of reference case run.
Command: The command used to execute the simulator of interest.
Queue Names: Queues to be used for executing the commands and jobs submission.
Max Model Runs: The number of model snapshots used for the analysis.
Perturbation Dis-
tribution:

Type of sampling distribution: Uniform or Normal.

Perturbation
Range:

The range of perturbation (relative standard deviation in the case of normal
distribution).

Number of Parame-
ters:

The number of parameters to be perturbed (in the case of GMODEL).

Number of Re-
sponses:

The number of responses to be analyzed (always required if ROMUSE is used
for more than input perturbation).

END A flag to end the sequence information.
PoI: Parameters of Interest: Two lines come after this, the first is the parameters file

name and the second is the database path to the parameters (required in the
case of GMODEL).

SCALE-PoI: Parameters of Interest: If all parameters to be perturbed, ALL must be placed
in the next line; otherwise, Materials: and Reactions: parameters must be
used. Used with SCALE.

VERA-PoI : Parameters of Interest: If all parameters are to be perturbed, ALLmust be placed
in the next line; otherwise, Materials: and Reactions: parameters must be
used. Used with VERA.

RoI: Response of Interest: Two lines come after this, the first is the response file
name and the second is the database path to the response (required in the case
of GMODEL).

Given Perts File: The name of the file containing the given perturbations.
Library Name: The name of the formatted library (required in the case of SCALE, VERA).
Covariance Direc-
tory:

The directory containing the unformatted covariance data.

S-SPACE= Output the basis (default = ON) {ON,OFF}
EUQ= Perform KL-Based UQ or MP-EUQ (default=OFF) {ON,OFF}
SMCUQ= Perform Surrogate Based MC UQ (default=OFF) {ON,OFF}
MCUQ= Perform brute force MC UQ (default=ON) {ON,OFF}

C.2 System Requirements and Specifications

ROMUSE is a C++ code compiled and tested via gcc version 4.8.3 on Linux Red Hat 4.8.3-9 (64
bit). All the tests are performed on CentOS Linux release 7.1.1503 available on NCSU HPC. The
ROMUSE package is distributed with the required Boost, Eigen, and HDF5 libraries. Moreover,
ROMUSE comes with the required covariance library, which is based on the SCALE covariance
library 44groupcov formatted in a binary file and a text formatted library [58].

Once in the ROMUSE root directory, the user can compile the code by first accessing the Makefile
and modifying the path and compiler parameters according to the system’s structure and then typing

CASL-U-2017-1445-000 160

make -B ROMUSE. The structure of the ROMUSE problem must be such that all input files, tagged
input files, reference libraries, and/or reference cases are in the same directory. The ROMUSE input
file must be named romuse.in and the simulator input file must be named input.txt. Other files
can be customized in the ROMUSE input file as will be shown later in this manual.

In the examples of subsequent sections, links are provided to directories distributed with RO-
MUSE that contain all the files necessary for users to run them.

C.3 Perturbing Input Parameters

C.3.1 Introduction

Perturbing input parameters is a vital feature for any analysis code, as many mathematical and
statistical analyses such as uncertainty quantification and data assimilation require manipulating
the parameter set. However, in order to build an analysis code that can work with a wide variety of
simulators, the ROMUSE perturbation module is designed such that it allows the user to manipulate
the input parameters of any given model as long as the parameters are HDF5 formatted, or in
SCALE cross-section library binary format [58], or in VERA cross-section library format [53, 29].
The ability to perturb any HDF5 formatted parameters allows ROMUSE to work with any simulator
supporting this I/O format (refer to Table C.2). ROMUSE has been built to serve nuclear reactor
simulators, therefore special attention has been given to nuclear reactor physics problems, mainly
simulated via SCALE [58, 34, 45] and VERA-CS [53]. The ROMUSE user can determine the type
of perturbations required depending on the subsequent application. ROMUSE offers three types of
possible perturbations:

1. Covariance Based Perturbations: This type of perturbation requires a covariance library to
be provided so that perturbations consistent with the given covariance library can be gener-
ated. This perturbation type can be used to generate Monte Carlo samples for uncertainty
quantification studies.

2. Given Perturbations: The user can provide his/her own perturbations to ROMUSE. This type
of perturbation is very useful for verification and validation studies where users are studying
the behavior of the model of interest over an interval in the parameter’s domain.

3. Random Perturbations: ROMUSE can introduce random perturbations into the nuclear data
cross-sections. The user must provide a range for the perturbations and choose a distribution
to generate perturbations from. This type of perturbation is important for applications such
as the subspace analysis, surrogate modeling and other important analysis types.

The three perturbation types mentioned above can be applied to any parameter (e.g. cross-sections).
The only requirement is that the parameters must be in SCALE, VERA, or HDF5 input format.

Table C.2: Parameters Perturbation Input Card Entries

Parameter Description
SEQUENCE= The sequence name:

Y-ROMUSE-X; {Y=SCALE,VERA,GMODEL} | {X=UQ,RFA,GP}
Ref: Directory of reference case run.
Max Model Runs: The number of model snapshots used for the analysis.
Library Name: The name of the formatted library (required in the case of SCALE, VERA).

CASL-U-2017-1445-000 161

PoI: Parameters of Interest: Two lines comes after this, the first is the parameters
file name and the second is the database path to the parameters (required in
the case of GMODEL).

SCALE-PoI: Parameters of Interest: If all parameters are to be perturbed, ALLmust be placed
in the next line; otherwise, Materials: and Reactions: parameters must be
used. Used with SCALE.

VERA-PoI : Parameters of Interest: If all parameters are to be perturbed, ALLmust be placed
in the next line; otherwise, Materials: and Reactions: parameters must be
used. Used with VERA.

Perturbation Dis-
tribution:

Type of sampling distribution: Uniform or Normal.

Perturbation
Range:

The range of perturbation (relative standard deviation in the case of normal
distribution).

Number of Parame-
ters:

The number of parameters to be perturbed (in the case of GMODEL).

Materials: The materials or nuclei to be perturbed. Example:
Materials:
N Number of materials or nuclei
For i=1,N
Nucleus ID or Material ID

Reactions: The reactions to be perturbed. Example:
Reactions:
M Number of Reactions
For i=1,M
Reaction ID Reaction ID

Given Perts File: The name of the file containing the given perturbations.
Covariance Direc-
tory:

The directory containing the unformatted covariance data.

END A flag to end the sequence information.

C.3.2 SCALE Cross-Section Library Perturbation

The SCALE cross-section library 44groupcov is formatted in a binary file which can be read via RO-
MUSE. In order to generate perturbed libraries for a SCALE case, ROMUSE requires the following
information (refer to Table C.2):

1. Reference library path.

2. Type of perturbation: Depending on the perturbation type further requirements might be
needed.

(a) Covariance Based Perturbation: Covariance library path and the number of Monte Carlo
samples.

(b) Given Perturbation: The given perturbations file path.

(c) Random Perturbation: The relative range of perturbations (e.g. ±10%) and the number
of samples.

CASL-U-2017-1445-000 162

Example Input Card (1)

In this example case (refer to Figure C.3), ROMUSE will generate 100 different cross-section libraries
based on a covariance library stored in /Path/To/Covariance/Files/. Note that ROMUSE as-
sumes that the user has already run a reference case which is located in /Path/To/Reference/Case/.
ROMUSE will perturb all cross-sections with covariance data in the provided path. After running
the card below with the correct reference case and library, a new directory called SNAPS with sub-
folders labeled snap0, ..., snap99 will be created. Each of these subfolders will have a full case of a
perturbed library imitating the format of the reference case.

Corresponding Example: Manual/Examples/SCALE/UQ

Figure C.3: SCALE-UQ Perturbation Input Card

Example Input Card (2)

In this example case (refer to Figure C.4), ROMUSE will generate 100 different perturbed cases.
The perturbations are generated via a uniform distribution with ±10% of the reference cases. Note
that ROMUSE assumes that the user has already run a reference case which is located in /Path/To/
Reference/Case/. ROMUSE will perturb the specified cross-sections corresponding to two nuclei
(U235 and U238) and three reactions (total cross-section, fission cross-section, and elastic scattering
[ID: 1,18,2 respectively]). After running the card below with the right reference case and library, a
new directory called SNAPS with subfolders labeled snap0, ..., snap99 will be created. Each of these
subfolders will have a full case of a perturbed library imitating the format of the reference case.

CASL-U-2017-1445-000 163

Corresponding Example: Manual/Examples/SCALE/RFA

Figure C.4: SCALE-RFA Perturbation Input Card

C.3.3 VERA Cross-Section Library Perturbation

The VERA cross-section library is actually the MPACT covariance library [29]. ROMUSE is able
to read this library into a vector and then manipulate it in a variety of ways. As mentioned in the
previous section, the information required depends on the type of perturbation. Currently ROMUSE
is compatible with the MPACT 47 group VERA library (refer to Table C.3). This library includes
295 different isotopes with different reaction cross-section data. But currently ROMUSE only has
access to the 44 group covariance library [58]; as a consequence, ROMUSE has a mapping capability
that is able to map perturbations from one group structure to another. Mapping the perturbations
is performed via linear interpolation based on the assumption of constant lethargy intervals.

The perturbed libraries are generated via ROMUSE. ROMUSE reads the 44groupcov covariance
library available within the SCALE6.1 package and perturbs the 47 group MPACT cross-section
library version 4. ROMUSE decomposes the 44-group matrix, creates 44-group perturbation factors,
projects the 44-group perturbation factors to 47-group perturbation factors, then perturbs the 47-
group cross-sections.

Based on the concept of a constant lethargy flux as the weight function, if the group structures
do not align, ROMUSE determines the fractional lethargy width of the unaligned boundaries and
uses these terms to map the cross-section perturbations from one group structure to another [24].
The following equation exemplifies how to map a perturbation from the A group structure to the

CASL-U-2017-1445-000 164

B group structure,

∆σBi = ∆σAj−1 +
∆σAj −∆σAj−1∣∣∣L(EAj)− L(EAj−1

)∣∣∣ ×
∣∣L (EBi)− L (EAj−1

)∣∣
where ∆σBi is the perturbation associated with the ith group in the B group structure and ∆σAj
is the computed perturbation associated with the jth group in the A group structure. In this case
i ∈ (j − 1, j) or EBi ∈

(
EAj , E

A
j−1

)
. L

(
EAj

)
is the lethargy term for energy group EAj . Note that

when groups align the perturbations are not altered.

Table C.3: 47 Energy Group Structure

Group Energy Boundary
1 20 MeV
2 6.0653 MeV
3 3.6788 MeV
4 2.2313 MeV
5 1.3534 MeV
6 0.8208 MeV
7 4.9787 MeV
8 0.1832 MeV
9 67.38 KeV
10 9.119 KeV
11 2.0347 KeV
12 0.13 KeV
13 78.9 eV
14 47.8512 eV
15 29.023 eV
16 13.71 eV
17 12.099 eV
18 8.3153 eV
19 7.33822 eV
20 6.47602 eV
21 5.715 eV
22 5.04348 eV
23 4.4509 eV
24 3.9279 eV
25 2.3824 eV
26 1.8554 eV
27 1.4574 eV
28 1.2351 eV
29 1.1664 eV

CASL-U-2017-1445-000 165

30 1.1254 eV
31 1.0722 eV
32 1.0137 eV
33 0.97100 eV
34 0.9099 eV
35 0.7821 eV
36 0.62506 eV
37 0.5032 eV
38 0.35767 eV
39 0.2705 eV
40 0.18443 eV
41 0.14572 eV
42 0.11157 eV
43 0.08197 eV
44 0.0569 eV
45 0.0428 eV
46 0.0306 eV
47 0.0124 eV

Example Input Card (1)

In this example case, ROMUSE will generate 100 different cross-section libraries based on the
covariance library. Note that ROMUSE assumes that the user has already run a reference case
which is located in /Path/To/Reference/Case/. ROMUSE will perturb all cross-sections available
in the library using the covariance data in the covariance library. ROMUSE will generate a new
directory called SNAPS with subfolders labeled snap0, ..., snap99. Each of these subfolders will have
a full case of a perturbed library imitating the format of the reference case (refer to Figure C.5).

CASL-U-2017-1445-000 166

Corresponding Example: Manual/Examples/VERA/UQ

Figure C.5: VERA-UQ Input Card

C.3.4 General Parameter Perturbation

In addition to the perturbation modes introduced above, ROMUSE can manipulate the parameters
of any simulator with HDF5 [30] input format. In this case the user should provide ROMUSE with
the database address of the I/O data.

Example Input Card (1)

Assuming that we have a Python or Matlab based simulator, or any other simulator with HDF5
formatted I/O, then the following ROMUSE input card will allow manipulation of the input param-
eters. Running the card below (refer to Figure C.6) will generate 100 different perturbed input cases
based on normal distributions having standard deviations 10% of the reference cases. Note that the
user can use SEQUENCE=GMODEL-ROMUSE-RFA and then provide a covariance library. The
samples will be Monte Carlo samples that can be used for uncertainty quantification. Moreover,
note that ROMUSE assumes that the user has already run a reference case which is located at
/Path/To/Reference/Case/. The HDF5 file name containing the parameters is Params.h5 and the
address of the parameters of interest is /Params. ROMUSE will generate a new directory called
SNAPS with subfolders labeled snap0, ..., snap99. Each of these subfolders will have a full case of a
perturbed library imitating the format of the reference case (in HDF5 format).

CASL-U-2017-1445-000 167

Corresponding Example: Manual/Examples/GMODEL/RFA

Figure C.6: GMODEL-RFA Input Card

C.4 Complex Sequences

Obviously, perturbing the input parameters must be followed by various steps depending on the
goal of the parameter perturbation performed in the first place. Therefore, complex sequences are
required. In the following subsection, new types of ROMUSE sequences are introduced. They are
referred to as “Complex Sequences" due to their nature. These sequences consist of a combination of
different types of sequences to perform certain tasks. The following subsections present a summary
of two important types of complex sequences.

C.4.1 Execution and Response: ROMUSE-EXE and ROMUSE-RESPONSES

The ROMUSE-EXE sequence follows any parameter perturbation cases. Providing this sequence
in the ROMUSE input file will execute the perturbation cases. Two key pieces of information must
be provided: The command to be used for the execution, and the job submission details (refer to
Table C.4). Note that for this sequence to work as expected, a prerequisite perturbation sequence
must exist such that the SNAPS folder is already present.

The ROMUSE-RESPONSES sequence provides information about the responses of interest to
be collected and analyzed. It is generally preferred to have the responses output in a database
format (e.g. HDF5 VERA-CS format). However, in many cases such as SCALE and Dakota, the
output is dumped into text files.

CASL-U-2017-1445-000 168

Table C.4: ROMUSE-EXE and ROMUSE-RESPONSES In-
put Card Parameters

Parameter Description
SEQUENCE= ROMUSE-EXE or ROMUSE-RESPONSES
Command: /path/to/command

Queue Names: Job submission information. Example:
N number of queues
M number of cores per job
For i=1:N
Queue Name C: capacity of this queue

Flags: Single Physics={YES/NO} (Default NO)
Multi Physics={YES/NO} (Default NO)
(required for ROMUSE-RESPONSES)

Simulator Out: Output-File-Name
Response Tag (the tag to search for in a text formatted output file)

END A flag to end the sequence information.

Example Input Card (1)

Running the card below (Figure C.7) will generate three different perturbed input cases based on the
gradient free Range Finding Algorithm (RFA) using a uniform distribution having bounds ±20%
of the reference values of U235 and U238 total for fission and elastic scattering cross-sections. Note
that the user can select SEQUENCE=SCALE-ROMUSE-UQ and then provide a covariance library
(refer to Figure C.8). In this case, the samples will be Monte Carlo samples that can be used for
uncertainty quantification. Moreover, note that ROMUSE assumes that the user has already run a
reference case which is located in Ref-CASE=/Path/To/Reference/Case. ROMUSE will generate
a new directory called SNAPS with subfolders labeled snap0, ..., snap2. Each of these subfolders will
have a full case of a perturbed library imitating the format of the reference case (in HDF5 format).

CASL-U-2017-1445-000 169

Corresponding Example: Manual/Examples/SCALE/RFA-EXE

Figure C.7: ROMUSE-EXE and ROMUSE-RESPONSES Input Card (RFA)

CASL-U-2017-1445-000 170

Corresponding Example: Manual/Examples/SCALE/UQ-EXE

Figure C.8: ROMUSE-EXE and ROMUSE-RESPONSES Input Card (UQ)

CASL-U-2017-1445-000 171

C.4.2 ROMUSE-DAKOTA

This sequence requires the presence of the two previous sequences. This sequence offers an interface
between ROMUSE and any simulator (SCALE, VERA-CS and General Model). In the following
subsection a full SCALE6.1 based example will be introduced; future versions of this manual will
present additional models demonstrating use of ROMUSE with VERA-CS (refer to Figure C.9).

Figure C.9: ROMUSE-DAKOTA Interface Scheme

This interface is tricky, due to the fact that the required parameters depend on the Dakota
method of interest. For more information about Dakota please refer to [1]. In order to solve this
problem ROMUSE will adapt a flexible technique that is almost independent of the Dakota method
used.

ROMUSE can compute many useful quantities related to the simulator of interest (SCALE,
VERA-CS and General Model), as summarized in Table C.5. These quantities include parameter
standard deviations, parameter means, response means, response standard deviations, parameter
and response perturbations, sensitivity coefficients, and many others. The premise of this interface
is to make any quantity read, computed or generated via ROMUSE available to Dakota such that
the construction of any Dakota case will be easier through the ROMUSE input card parameters
summarized in Table C.6. Therefore, development of a general interface between ROMUSE and
Dakota depends on a Dakota input file provided by the user and placed in the same directory as
the romuse.in file. However, this Dakota input must have special tags informing ROMUSE of the
structure of the Dakota input file.

Table C.5: ROMUSE-DAKOTA Tags

Tag Associated Quantity
$np Number of Parameters
$m Parameter Mean
$std Parameter Standard Deviation (Absolute)
$p Parameter Descriptors

CASL-U-2017-1445-000 172

$tnr Number of Response Functions
$ip Parameter Initial Point
$lp Parameter Lower Bound
$up Parameter Upper Bound

Table C.6: ROMUSE-DAKOTA Input Card Parameters

Tag Associated Quantity
SEQUENCE= ROMUSE-DAKOTA
Surrogate Type: e.g. P-01, P-02, P-03, Gaussian-surfpack, Gaussian-dakota
Number of Valida-
tion Points:

Number of points for validation.

Max Number of Ac-
tive Subspace Con-
struction Points:

Maximum number of snapshots used for subspace construc-
tion.

Subspace Approxi-
mation Error Toler-
ance:

Error tolerance for the algorithm of interest.

Recycle Sam-
ples=Yes

Use same samples for building the subspace and for surro-
gate construction (not recommended).

Covariance Direc-
tory:

/path/to/covariance/files

Input File: Name of Dakota input file with the tags.
Surrogate Data
File:

Name of the file to store the surrogate construction data
(this will be generated via ROMUSE).

Surrogate Chal-
lenge Data File:

Name of the file to store the surrogate challenge data (this
will be generated via ROMUSE).

Observations File: Name of the file to store the measurements and their uncer-
tainties (in case the user wants to generate these measure-
ments via ROMUSE).

Dakota Command: The Dakota command.
END End tag for the sequence.

Example Input Card (1)

This example builds a surrogate to parameterize the SCALE6.1 neutronics model (NEWT) [45]
in terms of the fission cross-section of U235. The surrogate is then used to perform uncertainty
quantification via Monte Carlo sampling and compared to the performance of the linearly estimated
uncertainty (via SCALE6.1 SAMS module) [45].

In this example ROMUSE will be used to prepare a full surrogate-based uncertainty quantifica-
tion study for a nuclear fuel pin cell problem simulated via SCALE6.1. First ROMUSE will generate
100 samples of the input parameters to be used in later sequences. Each perturbed case is then
run via the SEQUENCE=ROMUSE-EXE sequence. Once the cases are run, the responses are col-

CASL-U-2017-1445-000 173

lected via the SEQUENCE=ROMUSE-RESPONSES sequence. Finally, SEQUENCE=ROMUSE-
DAKOTA will construct the full Dakota case. A polynomial surrogate is used in the form represented
by (C.1). Dakota estimates the coefficients (ci) based on the given surrogate construction data,

f̃(x) = c0 +

M∑
i=1

cixi +

M∑
i=1

M∑
j≥i

cijxixj +

M∑
i=1

M∑
j≥i

M∑
k≥j

cijxixjxk , (C.1)

where M is the number of input parameters. The challenge data are used to validate the fitted
surrogate model. Different orders of polynomial surrogates require different minimum numbers of
construction data points as discussed in Section 4.1. In particular, for linear, quadratic, and cubic
orders respectively,

Nβ = M + 1

Nβ =
(M + 1) (M + 2)

2

Nβ =

(
M3 + 6M2 + 11M + 6

)
6

,

where Nβ is the number of required points. Nβ can grow dramatically as M and the order of
the polynomial increase. For more information on the available surrogate types refer to [1]. Since
ROMUSE has the capability to perform dimension reduction, this example utilizes the gradient
free RFA to find the basis of the active subspace in the uncertainty sources space so as to satisfy a
provided error criterion.

This example uses a nuclear fuel pin cell model simulated via SCALE and the goal is to determine
the uncertainty in the multiplication factor (keff) due to the fission cross-section of the U235 isotope.
Figure C.10 shows a representation of the 2-dimensional geometry of the fuel pin cell. At the center
(or the red region) is the fuel bullet which contains the uncertainty source in this example surrounded
by a Helium gap (He) which is the green region. The blue region is the zirc4 alloy cladding, and
finally the yellow region represents the borated water (H2O and B) that serves as a coolant to
extract the heat and as a moderator that slows down the neutrons such that they have a high
probability of fissioning the U235 nuclei. Boron is added to the coolant to absorb excess neutrons
that might lead to super-criticality (keff > 1.0) in the core system. In this example, a single fuel
pin cell is extracted from the reactor core model, therefore the reference keff is 1.172437. Since this
example uses the 44 group library and considers the uncertainty due to one cross-section type of
one isotope, the total number of parameters is 1× 1× 44 = 44 energy dependent parameters.

CASL-U-2017-1445-000 174

Figure C.10: SCALE Nuclear Fuel Pin Cell Model

First, 100 samples are generated, the ROMUSE-EXE sequence will run the corresponding cases,
and ROMUSE-RESPONSES will collect the multiplication factor estimated via the perturbed cases.
Finally, ROMUSE-DAKOTA will send the proper commands to build the subspace and pick the
proper subspace for the provided error upper bound tolerance (in this case 10−2 or 1% of the error
upper bound). Figure C.11 shows the error upper bound for this example. An expression for the
error upper bound and how ROMUSE calculates it can be found in [28]. Figure C.12 shows the
ROMUSE input (romuse.in). The tagged Dakota input file must be provided in the same directory
as that of romuse.in. This file will instruct ROMUSE on the Dakota method and how to construct
the Dakota case (refer to Figure C.13). After running this case ROMUSE will generate a folder
named DAKOTA-CASE, which will have a full Dakota case ready to run by the user or the user
can add another ROMUSE-EXE sequence to run the Dakota case directly from inside ROMUSE;
however, it is recommended to check the case before running it.

CASL-U-2017-1445-000 175

Figure C.11: Error Upper Bound Vs. Rank

CASL-U-2017-1445-000 176

Corresponding Example: Manual/Examples/SCALE/DAKOTA/SURR-UQ

Figure C.12: ROMUSE-DAKOTA Input Card

CASL-U-2017-1445-000 177

Figure C.13: Tagged Dakota Input File

As shown in Figure C.11, rank 5 achieves the error upper bound required. Therefore, instead
of dealing with 44 parameters, ROMUSE identified only 5 important parameters in a different co-
ordinate system represented by the basis. Once the basis is calculated it can be used to construct
different surrogate types: linear (P-01), quadratic (P-02), cubic (P-03), and Gaussian process surf-
pack. Table C.7 compares the performance of the different surrogates with the linearly estimated
uncertainties (sandwich equation) [28]. Table C.8 summarizes the error analysis results as reported
by the Dakota output file for the second order polynomial and the Gaussian Process surrogate
[1]. The leave-one-out cross-validation RMSPE and validation RMSPE (calculated on the challenge
samples) are discussed in Section 7.3.2. The RMSPE values can be compared to the observed range
in calculated keff values, which is approximately 1240 pcm.

CASL-U-2017-1445-000 178

Table C.7: Comparison of the uncertainty Estimated Via Dif-
ferent Surrogate Types

Method Standard Deviation (pcm)
ROMUSE – linear 149
ROMUSE – non-linear 155
ROMUSE-Gaussian Process 166
Sandwich Equation 133

Table C.8: Sample Surrogate Error Analysis as Reported By
Dakota

Surrogate Type Cross-Validation
RMSPE (pcm)

R-Squared Good-
ness of Fit

Validation RMSPE
(pcm)

P-02 141 92% 17
Gaussian Process surf-
pack

290 88% 56

CASL-U-2017-1445-000 179

Bibliography

[1] B. M. Adams, W. J. Bohnhoff, K. R. Dalbey, J. P. Eddy, M. S. Ebeida, M. S. Eldred, J. R. Frye,
G. Geraci, R. W. Hooper, P. D. Hough, K. T. Hu, J. D. Jakeman, M. Khalil, K. A. Maupin,
J. A. Monschke, E. M. Ridgway, Ahmad Rushdi, L. P. Swiler, J. A. Stephens, D. M. Vigil, and
T. M. Wildey. Dakota, a multilevel parallel object-oriented framework for design optimization,
parameter estimation, uncertainty quantification, and sensitivity analysis: Version 6.6 user’s
manual. Technical Report SAND2014-4633, Sandia National Laboratories, Albuquerque, NM,
Updated May 2017. Available online from http://dakota.sandia.gov/documentation.html.

[2] B. M. Adams, W. J. Bohnhoff, K. R. Dalbey, J. P. Eddy, M. S. Ebeida, M. S. Eldred, J. R. Frye,
G. Geraci, R. W. Hooper, P. D. Hough, K. T. Hu, J. D. Jakeman, M. Khalil, K. A. Maupin,
J. A. Monschke, E. M. Ridgway, Ahmad Rushdi, L. P. Swiler, J. A. Stephens, D. M. Vigil, and
T. M. Wildey. Dakota, a multilevel parallel object-oriented framework for design optimization,
parameter estimation, uncertainty quantification, and sensitivity analysis: Version 6.6 reference
manual. Technical Report SAND2014-5015, Sandia National Laboratories, Albuquerque, NM,
Updated May 2017. Available online from http://dakota.sandia.gov/documentation.html.

[3] B. M. Adams, W. J. Bohnhoff, K. R. Dalbey, J. P. Eddy, M. S. Ebeida, M. S. Eldred, J. R. Frye,
G. Geraci, R. W. Hooper, P. D. Hough, K. T. Hu, J. D. Jakeman, M. Khalil, K. A. Maupin,
J. A. Monschke, E. M. Ridgway, Ahmad Rushdi, L. P. Swiler, J. A. Stephens, D. M. Vigil, and
T. M. Wildey. Dakota, a multilevel parallel object-oriented framework for design optimization,
parameter estimation, uncertainty quantification, and sensitivity analysis: Version 6.6 theory
manual. Technical Report SAND2014-4253, Sandia National Laboratories, Albuquerque, NM,
Updated May 2017. Available online from http://dakota.sandia.gov/documentation.html.

[4] J. S. Arora. Introduction to Optimum Design. McGraw-Hill, New York, 1989.

[5] M. N. Avramova. CTF: A thermal hydraulic sub-channel code for LWR transient analyses,
user’s manual. Technical report, Pennsylvania State University, February 2009.

[6] L. S. Bastos and A. O’Hagan. Diagnostics for Gaussian process emulators. Technometrics,
51:425–438, 2009.

[7] G. E. P. Box and D. W. Behnken. Some new three level designs for the study of quantitative
variables. Technometrics, 2:455–475, 1958.

[8] G. E. P. Box and K. B. Wilson. On the experimental attainment of optimum conditions (with
discussion). Journal of the Royal Statistical Society Series B, 13:1–45, 1951.

[9] Benjamin Collins, Robert Salko, and Shane Stimson. VERA-CS with CIPS modeling capability.
Technical Report CASL-I-2015-0285-000, Oak Ridge National Laboratory, August 2015.

CASL-U-2017-1445-000 180

http://dakota.sandia.gov/documentation.html
http://dakota.sandia.gov/documentation.html
http://dakota.sandia.gov/documentation.html

[10] N. Cressie. Statistics of Spatial Data. John Wiley and Sons, New York, 1991.

[11] K. R. Dalbey, A. A. Giunta, M. D. Richards, E. C. Cyr, L. P. Swiler, S. L. Brown, M. S. Eldred,
and B. M. Adams. Surfpack user’s manual: Version 1.1. Technical report, Sandia National
Laboratories, Albuquerque, NM, 2006. Available online from http://dakota.sandia.gov/
packages/Surfpack.

[12] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis. Chapman &
Hall/CRC, Boca Raton, 1997.

[13] R. Ghanem and J. R. Red-Horse. Propagation of probabilistic uncertainty in complex physical
systems using a stochastic finite element technique. Physica D, 133:137–144, 1999.

[14] R. G. Ghanem and P. D. Spanos. Stochastic Finite Elements: A Spectral Approach. Springer-
Verlag, New York, 1991.

[15] Lindsay Gilkey. L3:VVI.H2L.P15.02: STAR-CCM+ (CFD) calculations and validation. Tech-
nical report, Sandia National Laboratories, 2017.

[16] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press, San Diego,
CA, 1981.

[17] Natalie Gordon. L3:VVI.H2L.P15.01: CTF (subchannel) calculations and validation. Technical
report, Sandia National Laboratories, 2017.

[18] H. Haario, M. Laine, A. Mira, and E. Saksman. DRAM: Efficient adaptive MCMC. Statistics
and Computing, 16:339–354, 2006.

[19] R. T. Haftka and Z. Gurdal. Elements of Structural Optimization. Kluwer, Boston, 1992.

[20] W. E. Hart. The Coliny project. Web site, 2007.

[21] A. S. Hedayat, N. J. A. Sloane, and J. Stufken. Orthogonal Arrays: Theory and Applications.
Springer, New York, 1999.

[22] D. Higdon, J. Gattiker, B. Williams, and M. Rightley. Computer model calibration using
high-dimensional output. Journal of the American Statistical Association, 103(482):570–583,
2008.

[23] E. T. Jaynes and G. Larry Bretthorst. Probability theory : the logic of science. Cambridge
University Press, Cambridge, UK; New York, NY, 2003.

[24] M.A. Jessee, P.J. Turinsky, and H.S. Abdel-Khalik. Many-group cross-section adjustment
techniques for boiling water reactor adaptive simulation. Nuclear Science and Engineering,
169(1):40–55, 2011.

[25] C. T. Kelley. Implicit Filtering. SIAM, 2011.

[26] B.K. Kendrick. MAMBA theory manual. Private communication, 2015.

[27] M. C. Kennedy and A. O’Hagan. Bayesian calibration of computer models. Journal of the
Royal Statistical Society, 63:425–464, 2001.

CASL-U-2017-1445-000 181

http://dakota.sandia.gov/packages/Surfpack
http://dakota.sandia.gov/packages/Surfpack

[28] B.A.A. Khuwaileh. Scalable Methods for Uncertainty Quantification, Data Assimilation and
Target Accuracy Assessment for Multi-Physics Advanced Simulation of Light Water Reactors.
PhD thesis, North Carolina State University, 2015.

[29] B. Kochunas, B. Collins, D. Jabaay, T.J. Downar, and W.R. Martin. Overview of develoment
and design of MPACT: Michigan parallel characteristics transport code. Technical report,
American Nuclear Society, 555 North Kensington Avenue, La Grange Park, IL 60526, 2013.

[30] S. Koranne. Hierarchical data format 5: HDF5. In Handbook of Open Source Tools, chapter 10,
pages 191–200. Springer, New York, 2011.

[31] A. Kraskov, H. Stogbauer, and P. Grassberger. Estimating mutual information. Physical Review
E, 69(6), 2004.

[32] A. Lewis, R.C. Smith, B. Williams, and V. Figueroa. An information theoretic approach to
use high-fidelity codes to calibrate low-fidelity codes. Journal of Computational Physics, 324,
2016.

[33] J. L. Loeppky, J. Sacks, and W. J. Welch. Choosing the sample size of a computer experiment:
A practial guide. Technometrics, 51:366–376, 2009.

[34] W.J. Marshall and B.T. Rearden. Criticality safety validation of Scale 6.1. Technical Report
ORNL/TM-2011/450, Oak Ridge National Laboratory, 2011.

[35] G. Matheron. The theory of regionalized variables and its applications. Les Cahiers du Centre
de morphologie mathématique de Fontainebleau. École national supérieure des mines, 1971.

[36] M. D. Morris. Factorial sampling plans for preliminary computational experiments. Techno-
metrics, 33(2):161–174, 1991.

[37] V. A. Mousseau et al. VUQ strategy. Technical Report CASL-U-2014-XXXX-YYY, Oak Ridge
National Laboratory, March 2014. In preparation.

[38] R. H. Myers and D. C. Montgomery. Response Surface Methodology: Process and Product
Optimization Using Designed Experiments. John Wiley & Sons, Inc., New York, 1995.

[39] J. Nocedal and Wright S. J. Numerical Optimization. Springer Series in Operations Research.
Springer, New York, 1999.

[40] W.T. Nutt and G.B. Wallis. Evaluation of nuclear safety from the outputs of computer codes
in the presence of uncertainties. Reliability Engineering and System Safety, 83:57–77, 2004.

[41] W. L. Oberkampf, M. M. Pilch, and T. G. Trucano. Predictive capability maturity model for
computational modeling and simulation. Technical Report SAND2007-5948, Sandia National
Laboratories, October 2007.

[42] Scott Palmtag. Coupled single assembly solution with VERA (problem 6). Technical Report
CASL-U-2013-0150-000, Oak Ridge National Laboratory, 2013.

[43] Robert Salko. CTF list of global variables. Github code repository, 2013.

[44] A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto. Sensitivity Analysis in Practice: A
Guide to Assessing Scientific Models. John Wiley & Sons, 2004.

CASL-U-2017-1445-000 182

[45] SCALE: A comprehensive modeling and simulation suite for nuclear safety analysis and design.
Technical Report ORNL/TM-2005/39, Version 6.1, Oak Ridge National Laboratory, 2011.
Radiation Safety Information Computational Center at Oak Ridge National Laboratory as
CCC-785.

[46] Jeff Secker, Ben Collins, Bob Salko, and Brian Kendrick. L1.CASL.P11.03: Qualify a core-wide
PWR CIPS capability that includes an initial corrosion product treatment. Technical Report
CASL-I-2015-0318-000, Oak Ridge National Laboratory, September 2015.

[47] R. C. Smith. Uncertainty Quantification: Theory, Implementation and Applications. SIAM,
Philadelphia, PA, 2014.

[48] A. Solonen, P. Ollinaho, M. Laine, H. Haario, J. Tamminen, and H. Järvinen. Efficient MCMC
for climate model parameter estimation: parallel adaptive chains and early rejection. Bayesian
Analysis, 7(3):715–736, 2012.

[49] R. Sues, M. Aminpour, and Y. Shin. Reliability-based multidisciplinary optimization for
aerospace systems. In Proc. 42rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dy-
namics, and Materials Conference, number AIAA-2001-1521, Seattle, WA, April 16-19 2001.

[50] L.P. Swiler and V.J. Romero. JANNAF V&V guide: A survey of advanced probabilistic
uncertainty propagation and sensitivity analysis methods. Technical Report SAND2013-5456P,
Sandia National Laboratories, Albuquerque, NM, 2013.

[51] G. J. Székely and M. L. Rizzo. Energy statistics: A class of statistics based on distances.
Journal of Statistical Planning and Inference, 143:1249–1272, 2013.

[52] G. L. Székely and M. L. Rizzo. Testing for equal distributions in high dimensions. InterStat,
5:1–6, 2004.

[53] J.A. Turner. Virtual environment for reactor applications (VERA): Snapshot 3.1. Technical
Report CASLU-2013-0164-000, Oak Ridge National Laboratory, 2013.

[54] G. N. Vanderplaats. Numerical Optimization Techniques for Engineering Design: With Appli-
cations. McGraw-Hill, New York, 1984.

[55] J.A. Vrugt, C.J.F. Ter Braak, M. P. Clark, J. M. Hyman, and B. A. Robinson. Treatment of in-
put uncertainty in hydrological modeling: Doing hydrology backward with markov chain monte
carlo, simulation. Water Research Resources, 44(12):W00B09, doi:10.1029/2007WR006720,
2008.

[56] J.A. Vrugt, C.J.F. Ter Braak, C. G. H. Diks, B. A. Robinson, J. M. Hyman, and D. Higdon.
Accelerating markov chain monte carlo simulation by differential evolution with self-adaptive
randomized subspace sampling. International Journal of Nonlinear Sciences and Numerical
Simulation, 10(3):273–290, 2009.

[57] S.S Wilks. Determination of sample sizes for setting tolerance limits. The Annals of Mathe-
matical Statistics, 12(1):91–96, 1941.

[58] M.L. Williams, D. Wiarda, G. Arbanas, and B.L. Broadhead. SCALE nuclear data covariance
library. Technical Report ORNL/TM-2005/39, Version 6, Vol. III, Sect. M19, Oak Ridge
National Laboratory, 2009.

CASL-U-2017-1445-000 183

[59] Y.-T. Wu, Y. Shin, R. Sues, and M. Cesare. Safety-factor based approach for probability-based
design optimization. In Proc. 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference, number AIAA-2001-1522, Seattle, WA, April 16–19 2001.

CASL-U-2017-1445-000 184

	Overview
	Manual Contents
	Getting Started with Dakota
	Acknowledgments

	Application Example Problems
	Cantilever beam
	General Linear Model Verification Test Suite
	COBRA-TF Thermal-Hydraulics Simulation Problem
	COBRA-TF Simulator Overview
	COBRA-TF test problem description
	VUQ Parameters in COBRA-TF Problem 6

	CIPS — Crud Induced Power Shift
	Non-mixing vane single bundle experiments

	Sensitivity Analysis
	Terminology
	Local Versus Global Sensitivity
	Sensitivity Metrics

	Recommended Methods
	Centered Parameter Study
	Multidimensional Parameter Study
	Global LHS Sampling
	PSUADE/Morris Method

	Summary and Additional Approaches

	Surrogate Models
	Polynomial Regression Models
	Fitting Polynomial Surrogates in Dakota

	Kriging and Gaussian Process Models
	Fitting Kriging Surrogates in Dakota

	Summary

	Optimization and Deterministic Calibration
	Terminology and Problem Formulations
	Special Considerations for Calibration

	Recommended Methods
	Gradient-Based Local Methods
	Derivative-Free Local Methods
	Derivative-Free Global Methods

	Summary and Additional Approaches

	Uncertainty Quantification
	Uncertainty Propagation
	Sampling Methods
	Stochastic Polynomial Methods
	Verification
	Prediction Intervals
	Uncertainty Propagation: Cantilever Beam Example

	Bayesian Model Calibration
	Direct Implementation of Bayes' Relation
	Sampling Based Metropolis Algorithms
	Model Calibration and Surrogate Models
	Verification
	Synthetic Data
	Bayesian Calibration Examples

	COBRA-TF VUQ Studies
	Initial Parameter Studies with Two Power Distributions
	COBRA-TF Sensitivity Studies
	Centered Parameter Study
	Latin hypercube sampling studies
	Morris Screening
	Screening to Reduce Parameters

	Calibration Studies
	Deterministic Calibration
	Surrogate Construction
	Bayesian Calibration

	CIPS — Crud Induced Power Shift
	The CIPS Phenomenon
	Parameter Ranking and Downselection
	VERA Common Input Parameters
	COBRA-TF Parameters
	MAMBA1D Parameters
	Neutronics Cross Section Sensitivity
	Parameter Downselect

	CIPS UQ Simulations
	Wilks Uncertainty Quantification

	Design With Hi2Lo Framework
	Mutual Information-Based Design
	Dakota Implementation

	General Linear Model Verification Test Suite
	Verification Scenarios
	Correlation Functions
	Energy Test of Equal Distributions

	Procedure for Running COBRA-TF Studies
	ROMUSE2.0 User Manual
	Introduction
	System Requirements and Specifications
	Perturbing Input Parameters
	Introduction
	SCALE Cross-Section Library Perturbation
	VERA Cross-Section Library Perturbation
	General Parameter Perturbation

	Complex Sequences
	Execution and Response: ROMUSE-EXE and ROMUSE-RESPONSES
	ROMUSE-DAKOTA

